Applied Mathematics and Computation 218 (2012) 4710-4730

Contents lists available at ScienceDirect X
APPLIED
. . . MATHEMATICS
Applied Mathematics and Computation CompuTATION
journal homepage: www.elsevier.com/locate/amc e
Aerospace design optimization using a steady state real-coded
genetic algorithm
John D. Dyer !, Roy J. Hartfield **2, Gerry V. Dozier ™3, John E. Burkhalter *
2 Auburn University, Auburn, AL 36849, United States
b North Carolina A&T, Greensboro, NC 27411, United States
ARTICLE INFO ABSTRACT
Keywords: This study demonstrates the advantages of using a real coded genetic algorithm (GA) for
AEI‘QSPRCE_ aerospace engineering design applications. The GA developed for this study runs steady
Optimization state, meaning that after every function evaluation the worst performer is determined

Rocket propulsion

Genetic algorithm

Real coded genetic algorithm
Steady state genetic algorithm

and that worst performer is then thrown out and replaced by a new member that has been
evaluated. The new member is produced by mating two successful parents through a cross-
over routine, and then mutating that new member. For this study three different prelimin-
ary design studies were conducted using both a binary and a real coded GA including a
single stage solid propellant missile systems design, a two stage solid propellant missile
systems design and a single stage liquid propellant missile systems design.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Optimization of aerospace engineering applications using genetic algorithms (GA’s) such as spacecraft controls [1,2],
turbines [3], helicopter controls [4], flight trajectories [5], wings and airfoils [6,7], missiles [8-11], rockets [12], propellers
[13] and inlets [14] have been preformed with great success. In some cases, real coded GA’s have been shown to produce
better results than binary coded GA’s [15-17]. This success is the primary motivation for the current study involving
aerospace applications. The goal of engineering design optimization is to find an optimum solution to a design problem.
Optimization has evolved throughout the years from classical methods to modern evolutionary algorithms. Modern comput-
ers with their exceedingly fast computational times have enabled optimizers to become extremely efficient at solving very
complex problems.

All GA’s are based on the principles developed by John Holland in his book “adaptation in natural and artificial systems”
[18]. Holland outlined the methods for successfully implementing population based adaptive optimizers. Holland’s methods
operate on the principle of survival of the fittest. In a computational sense, candidate solutions are assembled in a population
and compared to one another, the weak die off and the strong are left to reproduce and mutate to produce better children.

The search for a more efficient optimizer for some of these aerospace applications arose due to the extended run times
associated with long range missiles using the IMPROVE®© optimizer (Implicit Multi-objective PaRameter Optimization Via
Evolution) [19]. The IMPROVE® binary encoded generational GA has been used extensively for optimization of missile
systems and has been shown to be a very versatile and robust method for optimization. A primary disadvantage of the binary

* Corresponding author.
E-mail address: rjh@eng.auburn.edu (R.J. Hartfield).

1 Graduate Research Assistant, Aerospace Engineering, AIAA Member.

2 Professor, Aerospace Engineering, Associate Fellow AIAA.

3 Department Chair, Computer Science.

4 Professor Emeritus, Aerospace Engineering, Associate Fellow AIAA.
0096-3003/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2011.07.038

http://dx.doi.org/10.1016/j.amc.2011.07.038
mailto:rjh@eng.auburn.edu
http://dx.doi.org/10.1016/j.amc.2011.07.038
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

J.D. Dyer et al./ Applied Mathematics and Computation 218 (2012) 4710-4730 4711

Nomenclature

u mutation rate

g mutation amount
Ae nozzle exit area
A* nozzle throat area

b2tail tail semi-span
b2wing wing semi-span
crtail tail root chord
crwing wing root chord
dbody diameter of body
dnose nose diameter
dstar throat diameter

eps epsilon-grain

f propellant grain fillet radius
GA genetic algorithm

Ilbody length of body

LE leading edge

Inose length of nose

N number of star points-grain

rbody radius of body

Ri propellant inner grain radius
rnose radius of nose

Rp propellant outer grain radius
TE trailing edge

TOF time of flight
xLEt X-location of tail leading edge
XLEw X-location of wing leading edge

coded GA comes from the fact that because all of the variables must be converted into a single bit string, the solution accu-
racy is dependant on the number of bits that can be used for the string.

Because of the large ranges associated with many of the design parameters the smallest resolution for the binary GA is
generally limited to about 1% of the solution space for complex problems while the real coded GA is only limited to a double
precision number. The two stage solid missile system model used in this study has 46 design parameters making up each
member of the population, thereby compounding the resolution problems for the binary GA. Resolution is not a significant
issue with a real coded GA because all of the variables remain real double precision variables. Dozier et al. [20], Unsal et al.
[21] and Dozier et al. [22] demonstrated the ability for a real coded GA to achieve shorter run times as well as more accurate
solutions for some applications. Hamming cliffs can also pose a problem for the binary GA because all of the design param-
eters are converted into a single bit string. For example if two integers 15, and 16 were represented by the bit strings 01111
and 10000 respectively , the GA would have to change all of the bits simultaneously to change from 15 to 16. Mutation and
crossover do not always solve this problem. Hamming cliffs are not possible with the real GA because the design variables
remain real coded.

Another advantage of the real GA created for this study is that it uses steady state optimization unlike the generational
optimization used by the binary GA. The key difference is that in the steady state GA for each generation only the worst per-
former is thrown out and replaced by a new member, whereas for the generational GA all of the members of the population
are thrown out and replaced (expect in elitist mode when the best member remains in the next generation) using a similar
tournament routine. For complex problems the steady state GA may not be as efficient as the generational GA because of its
lack of diversity. For the steady state GA, once the survivors have had a chance to crossover (i.e. pass genetic material back
and forth through their variables), the new member replacing the worst performer is run back through the objective func-
tion. This process continues, with the parents producing on average better offspring, until the maximum number of gener-
ations (user specified) is reached. There are proofs [23,24] which show why this process produces increasingly superior
performers in a population, but a simplistic view is that a good parent mated with another good parent, is more likely to
produce good offspring than two poor parents when mated. This is not to say that two good parents cannot produce poor
performers. Rather, when two good performers exchange genes, statistically the resulting offspring have a higher chance
of outperforming their parents.

2. Real-coded GA methodology

The real and binary GA’s used in this study both operated using the same tournament style evolution of a population.
They each work with a number of candidate solutions to solve a particular problem. A data structure known as an individual

Download English Version:

https://daneshyari.com/en/article/4631306

Download Persian Version:

https://daneshyari.com/article/4631306

Daneshyari.com

https://daneshyari.com/en/article/4631306
https://daneshyari.com/article/4631306
https://daneshyari.com

