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a b s t r a c t

We address the question of the uniqueness of solution to the initial value problem associ-
ated to the equation

@tuþ ia@2
x uþ b@3

x uþ icjuj2uþ djuj2@xuþ �u2@x�u ¼ 0; x; t 2 R;

and prove that a certain decay property of the difference u1 � u2 of two solutions u1 and u2

at two different instants of times t = 0 and t = 1, is sufficient to ensure that u1 = u2 for all the
time.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this work we consider the following equation:

@tuþ ia@2
x uþ b@3

x uþ icjuj2uþ djuj2@xuþ �u2@x�u ¼ 0; x; t 2 R; ð1:1Þ

where a; b 2 R; b – 0; c; d; � 2 C and u = u(x, t) is a complex valued function. Our main concern is to find a sufficient decay
property satisfied by the difference of two different solutions at two different instants of time to prove the uniqueness of
the solution to the initial value problem (IVP) associated to (1.1).

The Eq. (1.1), with the mixed structure of Korteweg–de Vries (KdV) and Schrödinger equations, was proposed by Hase-
gawa and Kodama [7,16] to describe the nonlinear propagation of pulses in optical fibers. This equation is also known as
Hirota equation in the literature. Several aspects of this equation including well-posedness issues, solitary wave solutions,
unique continuation property, have been studied by various authors recently, see for example [2–4,17,22], and references
therein.

Study of unique continuation property (UCP) for certain models has drawn much attention of a considerable section of
mathematicians in recent time, see for example [1,4,8–15,18–21,23,24] and references therein. In particular, in [3,4] we
addressed the UCP for the Eq. (1.1). In [4], we proved that if a sufficiently smooth solution u to the initial value problem asso-
ciated to (1.1) is supported in a half line at two different instants of time then u vanishes identically. The precise statement of
our result in [4] is the following.

Theorem 1.1 [4]. Let u 2 C([t1, t2];Hs) \ C1([t1, t2];H1), s P 4 be a solution of the Eq. (1.1) with a; b; c; d; � 2 R; b – 0. If there
exists t1 < t2 such that

suppuð�; tjÞ � ð�1; aÞ; j ¼ 1;2; ð1:2Þ
or; ðsuppuð�; tjÞ � ðb;1Þ; j ¼ 1;2Þ: ð1:3Þ
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Then u(t) = 0 for all t 2 [t1, t2].
In our subsequent work [3], we obtained more general uniqueness property for the solution of the IVP associated to (1.1).

Theorem 1.2 [3]. Let u, v 2 C([t1, t2];Hs) \ C1([t1, t2];H1), s P 4 be solutions of the Eq. (1.1) with a; b; c; d; � 2 R; b – 0. If there
exists b 2 R such that

uðx; tÞ ¼ vðx; tÞ; ðx; tÞ 2 ðb;1Þ� ft1; t2g; ð1:4Þ
or; ðuðx; tÞ ¼ vðx; tÞ; ðx; tÞ 2 ð�1; bÞ � ft1; t2gÞ: ð1:5Þ

Then

uðtÞ ¼ vðtÞ 8t 2 ½t1; t2�:

Remark 1.1. Theorem 1.1 is the special case of Theorem 1.2 when v � 0.
Motivation to obtain the above results is the following observation. Consider the IVP associated to the linear part of (1.1),

i.e.,

ut þ iauxx þ buxxx ¼ 0;
uðx;0Þ ¼ u0ðxÞ:

�
ð1:6Þ

If u and v are solutions to (1.6) then w :¼ u � v is also a solution to (1.6) with initial data w(x,0) = u(x,0) � v(x,0) ¼: w0(x). If
w0 is sufficiently smooth and has compact support, then using Paley–Wiener theorem it is easy to see (for detail see [4]) that
w � 0, i.e., u � v. But the proof of the same property is not so simple when one considers the nonlinear terms as well, because
in this case w :¼ u � v is no more a solution. To overcome this situation, we generalized and employed the techniques devel-
oped in the context of the generalized KdV equation by Kenig–Ponce–Vega [12,13] to prove Theorems 1.1 and 1.2.

Quite recently, Escauriaza et al. [6] introduced a new technique to obtain sufficient conditions on the behavior of the dif-
ference u1 � u2 of two solutions u1 and u2 of the generalized KdV equation at two different instants of time t = 0 and t = 1 that
guarantees u1 � u2. In [6], the authors obtained a sharp decay condition to guarantee the uniqueness of solution to the gen-
eralized KdV equation. So, there arise a natural question, whether one can find such a decay condition to get uniqueness
property for a mixed equation of the KdV and Schrödinger type. In this work, we shall extend the approach in [6] to address
a uniqueness question to the IVP associated to the Hirota Eq. (1.1) which has a mixed structure of the KdV and the Schrö-
dinger equations. Our first main result of this work is the following.

Theorem 1.3. Let u1;u2 2 Cð½0;1�; H3ðRÞÞ \ L2ðjxj2dxÞÞ, be strong solutions of the Eq. (1.1) with a; b; c; d; � 2 R; b – 0. If, for any
a > 0,

u1ð�;0Þ � u2ð�;0Þ; u1ð�;1Þ � u2ð�;1Þ 2 H1ðeax3=2
þ dxÞ; ð1:7Þ

then

u1 � u2:

To prove Theorem 1.3 we follow the techniques introduced in [6] by deriving some new estimates that are appropriate to
work with the equation under consideration.

Using the gauge transformation

vðx; tÞ ¼ eikxþi ak2�2bk3ð Þtuð2ak� 3bk2Þt; tÞ ð1:8Þ

with k ¼ a
3b, one can work for an equivalent equation for v without the term iauxx in the linear part. With this, it seems that,

our result for the original equation also follows from the techniques in [6]. But it is not the case: because if we work on the
transformed equation for v (without the Schrödinger term), in the beginning we need to suppose that

v1ðx; tjÞ � v2ðx; tjÞ 2 H1ðeax3=2
þ Þ ¼: X1; j ¼ 1;2: ð1:9Þ

So, after undoing the transformation, for the original solution u, we need:

u1ðx; tjÞ � u2ðx; tjÞ 2 H1ðeax3=2
þ Þ () v1ðx; tjÞ � v2ðx; tjÞ 2 H1 eaðxþa2=2bÞ3=2

þ

� �
¼: X2: ð1:10Þ

But (1.10) is not always true, because one can find function f for which kfkX1
<1 but kfkX2

¼ 1 and vice versa.
Therefore, it is not possible to discard the Schrödinger term using gauge transform so as to apply the techniques from [6]

directly in our case.
On the other hand, one may think of treating the term iauxx at par with nonlinear terms and apply the estimates from [6]

directly. This is also not possible, because the term with a does not satisfy the necessary decay condition so as to use the
estimates from our earlier works [3,4]. This situation has been explained in our earlier work [3], Remark 3.10.

Although the idea and estimates are similar to the one introduced in [6], the presence of the Schrödinger term in the lin-
ear part creates obstacle to obtain such estimates, which can be seen more explicitly in the derivation of the lower estimates
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