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a b s t r a c t

In this paper, firstly, the finite difference method is explored for the fourth-order fractional
diffusion–wave system. The method is proved to be uniquely solvable, stable and conver-
gent in l1-norm by the energy method. Then we examine a subdiffusion system and pres-
ent the numerical analysis using a different method. Numerical experiments are provided
to demonstrate the accuracy and efficiency of the proposed schemes.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Fractional diffusion equations (FDEs) have been studied widely in recent years. Investigations show that FDEs can
describe many phenomena and processes in physics [1,2], engineering [3,4], and other sciences [5–8].

The fractional diffusion–wave (FDW) equation is a linear integro-differential equation obtained from the classical diffu-
sion or wave equation by replacing the first- or second-order time derivative by a fractional derivative of order a > 0 [9,10].
Much considerable work has been done theoretically or numerically on the fractional diffusion–wave or the subdiffusion
equations, including the finite difference methods [11–20]. Recently, Tadjern and Meerschaert [21,22] firstly increased
the temporal accuracy to second-order by using an extrapolated Crank–Nicolson method for the one-dimensional fractional
diffusion equation and a Richardson extrapolation method for the two-dimensional fractional diffusion equation. Cui [23]
constructed a compact finite difference scheme with spatial accuracy of fourth order for the one-dimensional fractional dif-
fusion equation. Liu et al. [24] established a new implicit difference scheme for a modified anomalous subdiffusion equation
with a nonlinear source term and analyzed the stability and convergence by using a new energy method. Shen et al. [25]
studied the fractional Fokker–Planck equation and presented some practical numerical methods. Sun and Wu [26] investi-
gated a fully discrete scheme by the method of order reduction for a FDW system and proved the solvability, stability and
convergence by the energy method. Du et al. [27] provided a compact difference scheme for the fractional diffusion–wave
system on the basis of [26]. Gao and Sun [28] derived a compact finite difference scheme for the fractional subdiffusion equa-
tions with convergence order O(s2�c + h4). Zhao and Sun [29] presented a box-type scheme by using order reduction ap-
proach and L1 discretization and applied a novel technique in the proof of both stability and convergence.

During the research on modeling and controlling of beams and waves, to reduce the level of noise, researchers have been
led to consider control laws based on lower order derivatives, that is, fractional derivatives [30]. Then another strong moti-
vation for considering fractional derivatives is that, for a Bemouilli–Euler beam, the H1 optimal wave absorbing problem at
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the boundary is solved by a fractional derivative compensator of order one-half [30]. But in some applications, a fourth-order
space derivative term must be indispensable. For example, wave propagation in beams and modeling formation of grooves
on a flat surface because of grain require fourth-order space derivative terms in their formulations [31,32]. Jafari et al. [33]
solved a fourth-order FDW equation in a bounded domain by decomposition method. Agarwal [34,35] presented a general
solution to FDE equations containing fourth-order space derivative in unbounded and bounded domains. Golbabai and Say-
evand [36] applied homotopy perturbation method to obtain the approximate solution of the generalized fourth-order frac-
tional diffusion–wave equations. So far, the finite difference method for the fourth-order fractional diffusion systems is few
to be seen. Here, we explore this method for the fourth-order fractional diffusion systems.

In this paper, firstly, we consider the fourth-order fractional diffusion–wave equation [35]

@au
@ta
þ b2 @

4u
@x4 ¼ f ðx; tÞ; x 2 ð0; LÞ; t 2 ð0; T� ð1Þ

with the boundary conditions

uð0; tÞ ¼ g1ðtÞ; uðL; tÞ ¼ g2ðtÞ;
@2uð0; tÞ
@x2 ¼ h1ðtÞ;

@2uðL; tÞ
@x2 ¼ h2ðtÞ; t 2 ð0; T� ð2Þ

and the initial conditions

uðx;0Þ ¼ /ðxÞ; @uðx; 0Þ
@t

¼ wðxÞ; x 2 ½0; L�; ð3Þ

where a is a parameter describing the order of the fractional derivative, b denotes a constant coefficient and f(x, t) is a known
function. As in [35], we here consider Caputo fractional derivative

@au
@ta
¼ 1

Cð2� aÞ

Z t

0

@2uðx; sÞ
@s2

ds

ðt � sÞa�1 ; 1 < a < 2 ð4Þ

with C denoting the gamma function. When a = 1 and a = 2 , Eq. (1) represents a diffusion and a wave equation respectively.
It is observed that as a increases from 0 to 2, the process changes from (slow) subdiffusion (0 < a < 1) to classical diffusion
(a = 1) to diffusion–wave (1 < a < 2) to classical wave process (a = 2) [32].

The rest of the paper is organized as follows. In Section 2, one Crank–Nicolson finite difference scheme is derived. Section
3 is devoted to prove the solvability, stability, and convergence of the scheme by using the energy method. In Section 4, a
subdiffusion system is examined and a finite difference scheme as well as the numerical analysis is provided. Section 5 dem-
onstrates three illustrative numerical examples. In the end, a concise conclusion is made.

2. Finite difference scheme for diffusion–wave system (1 < a < 2)

Firstly, we denote xj = jh, tn = ns, Xh = {xjj0 6 j 6M}, Xs = {tnj0 6 n 6 N}, and Xs
h ¼ Xh �Xs, where h = L/M, s = T/N are the

uniform spacial and temporal mesh sizes respectively, and M, N are two positive integers.
Suppose u ¼ fun

j j0 6 j 6 M; 0 6 n 6 Ng is a grid function on Xs
h. Introduce the following notations:
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Let uh = {u = (u0, u1, . . . ,uM), u0 = uM = 0}. For v 2 uh, u 2 uh, we introduce the following discrete l2-inner product(�,�), discrete
l2-norm k � k and discrete l1-norm k � k1:

ðun;unÞ ¼ h
XM�1
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jun
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:

In the paper, C denotes a general positive constant, which may have different values in different occurrences.
Now, we consider the finite difference scheme for the problem (1)–(3). Assume that problem (1)–(3) has a smooth solu-

tion uðx; tÞ 2 C4;3
x;t ð½0; L� � ð0; T�Þ. Let

vðx; tÞ ¼ @uðx; tÞ
@t

; ð5Þ
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