
Implementation of ILC batch update using a robotic experimental setup

Yongqiang Ye, Danwei Wang *

School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798

Received 16 June 2004; received in revised form 6 April 2005; accepted 18 November 2005

Available online 6 January 2006

Abstract

Batch update is one important feature of iterative learning control (ILC). This feature is fully exploited to simplify the development of a

software platform in a robotic experimental setup for ILC. The software platform has a hierarchical structure that has two levels associated with

the two phases of ILC. The low level software is rooted in a digital-signal-processor card and the high level software is hosted in the PC. This

structure makes the experimental setup match the unique requirements of ILC. Moreover, a graphical-user-interface is built for real-time

monitoring the results of ILC and for easy human-interaction with the software platform. The experimental setup is verified with a view of

learning control in real-time and has served as a general test-bed for ILC laws.

q 2006 Elsevier B.V. All rights reserved.

Keywords: Iterative learning control; Batch update; Manipulators

1. ILC and batch update

Iterative learning control (ILC) [1] can be applied to a

control system that has to execute, repeatedly, the same

trajectory, the same motion or the same operation. In the

presence of few stochastic disturbances, a comparable error

will occur in the response of the system when the system

executes a trajectory. This error can be filtered and buffered

into a memory to offer a modified input signal for the next

repetition. The error in the system response should be smaller

after modification of the input signal until an acceptable level.

Given a desired output trajectory yd(t) for a fixed operation

period GZ[0,T], a general form of ILC can be represented by,

ujðtÞZ ujK1ðtÞCkLð$; eiðtÞÞ (1)

where i%j, t2G, ei(t)Zyd(t)Kyi(t), L($) is a function chosen
by the designer and k is a scalar learning gain to adjust the

learning speed. Except the current-cycle ILC [8,11], which is

actually a feedback scheme, we have i%jK1 in (1) and input

update relies on error of past cycles which are already

available. Hence, ILC is featured by batch update. A new

repetition can be executed after the input update is totally

completed. In other words, ILC can be divided into two phases

running alternatively and continuously. One phase is the

execution of a command which is usually an implementation of

feedback control, and the other is the command update (1)

(Fig. 1).

Any feedback control algorithm should run concurrently

with the output of command and thus is termed on-line.

Implementation of ILC is quite different and the ILC algorithm

needs not be on-line with respect to the execution of command.

Instead, the algorithm can run between two successive

repetitions. Real-time experimental implementation of ILC

only requires the ILC algorithms to be semi-on-line [12].

In this project, ILC batch update is implemented using a

robotic experimental setup. A two-level software hierarchy is

adopted and the two levels are functionally associated with the

two phases of ILC. The low level, rooted in the (digital signal

processing) DSP-card, makes the robot execute a given

command. The high level, hosted in the PC, is the main

program which contains the ILC algorithms (command update)

and communicates with the low level. The PC does most jobs.

The two-level arrangement greatly relieves the burden on the

DSP processor and utilizes the powerful computational/me-

morial capacity of the PC.

The main programming language is Matlab/Simulink and C

only serves as complement: the low-level software is con-

structed in Simulink and C; the high level is programmed in

Matlab or Simulink. Using Matlab/Simulink speeds the project

significantly and complex ILC algorithms can be realized

straightforward. A user-friendly GUI is easily constructed via a

commercial software dSPACE ControlDesk [18] for real-time

observation/modification of the data/parameters in the ILC

Microprocessors and Microsystems 30 (2006) 259–267

www.elsevier.com/locate/micpro

0141-9331/$ - see front matter q 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2005.11.003

* Corresponding author. Tel.: C65 67905376; fax: C65 67920415.

E-mail address: edwwang@ntu.edu.sg (D. Wang).

http://www.elsevier.com/locate/micpro


system. Moreover, certain tricks make the GUI a unified

approach to access the data in the DSP card and the PC,

eliminating the need for two GUIs. The experimental setup has

been shown a quick and effective tester for ILC laws [14–17].

2. Hardware system

The SEIKO D-TRAN 3000 Series robot used in this work is

a four-axis, closed-loop DC servo Selective Compliant

Assembly Robot Arm (SCARA) with high gear ratios [24].

Each of the four axes provides a different motion and

contributes to one degree of freedom of the robot (Fig. 2).

Figure 3 shows an overview of the hardware connections. A

DS1102 DSP controller board [19] sits in the 16-bit ISA slot on

the PC motherboard. The Connector Panel CP1102 provides

connection between the DS1102 DSP controller board and the

interface board. The interface board contains signals like

control signals for the various axes of the robot arm, the

encoder count signal, the signals of overrun limit switches and

power supply. Separate PWM DC servomotor amplifiers are

used to control the respective joint movements of the SCARA.

An external power supply unit supplies 30 V DC needed by the

PWM DC servomotor amplifiers and 5 V DC needed for the

interface board. More details about the hardware system can be

found in [6].

3. Software platform tailored for ILC

3.1. Revisiting the uniqueness of ILC

First, the execution of command in ILC is finite time. This is

quite different from feedback control where the execution is

typically infinite. One can regard the phase of command update

in ILC as an interval between repetitions. There is no apparent

time constraint for this interval. Therefore, ILC algorithm is

allowed to be complex and the computational burden can be

heavy. In the interval, calculations other than ILC algorithms

can also be implemented. For example, in [5], system

identification is carried out occasionally between repetitions

to update the model which is used in the ILC algorithm.

Fig. 1. Two phases of ILC.

Fig. 2. Experimental robot arm.

Y. Ye, D. Wang / Microprocessors and Microsystems 30 (2006) 259–267260



Download English Version:

https://daneshyari.com/en/article/463134

Download Persian Version:

https://daneshyari.com/article/463134

Daneshyari.com

https://daneshyari.com/en/article/463134
https://daneshyari.com/article/463134
https://daneshyari.com

