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a b s t r a c t

A Galerkin boundary element method based on interpolatory Hermite trigonometric wave-
lets is presented for solving 2-D potential problems defined inside or outside of a circular
boundary in this paper. In this approach, an equivalent variational form of the correspond-
ing boundary integral equation for the potential problem is used; the trigonometric wave-
lets are employed as trial and test functions of the variational formulation. The analytical
formulae of the matrix entries indicate that most of the matrix entries are naturally zero
without any truncation technique and the system matrix is a block diagonal matrix. Each
block consists of four circular submatrices. Hence the memory spaces and computational
complexity of the system matrix are linear scale. This approach could be easily coupled into
domain decomposition method based on variational formulation. Finally, the error esti-
mates of the approximation solutions are given and some test examples are presented.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

It is well-known that the boundary element method (BEM) has been recognized as a powerful tool for treatment of
boundary value problems in science and engineering. The main advantage of the BEM is that the dimensionality of the prob-
lem can be reduced by one. However, the computational complexity of the system matrix which is dense eliminates its
advantage. Hence this drawback makes it difficult to apply the BEM to large�scale problems. To overcome the computational
difficulty involved in the BEM, many fast methods have been developed in recent years. The methods like the fast multipole
method [1], the panel clustering technique [2] and the wavelet BEMs [3–12] reduce the computational complexity largely.

Among the various wavelet BEMs, those based on Galerkin scheme may be attractive because of the high matrix compres-
sion rate and the easy implementation of boundary conditions. In the wavelet Galerkin BEMs, the wavelet functions are used
as the trial and test functions of variational formulation. Due to the local support and the vanishing moment property of the
wavelets, most of the matrix entries have small values in the wavelet Galerkin BEMs, therefore, the small entries can be trun-
cated by a special technique to obtain a sparse matrix, but it may lead to potentially high computational cost.

Many efforts have been devoted to improving the wavelet BEMs. Quak [13] has constructed a multiresolution analysis
(MRA) of nested subspaces of Hermite trigonometric wavelets. The authors [14–17] have used the trigonometric wavelets
in the boundary element analysis based on the natural boundary integral equations. The purpose of this paper is to simplify
the computation of the matrix entries by using the trigonometric wavelets as the basis. We call this approach as trigonomet-
ric wavelet Galerkin BEM (TWGBEM). In this approach, the kernel function of the BIE is expanded to a Fourier series. The
(2J+2 + 1) � (2J+2 + 1) system matrix can be decomposed into a (J + 2) � (J + 2) block matrix, where J is the scaling level of
wavelets. The analytical formulae of the matrix entries are obtained by calculating double integrals directly. It can be found
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that most of the entries are naturally zero without any truncation technique. As a result, these are only J + 4 non-zero sub-
matrices which consist of smaller symmetric circular matrices or antisymmetric circular matrices. Hence the memory spaces
and computational complexity of the system matrix are linear scale.

Besides the conventional BEM and Galerkin BEM (GBEM), there are still many other methods and techniques existing in
the literature for solving the potential problems, such as the finite element method (FEM), the element free Galerkin method
(EFGM) [18], the Galerkin boundary node method (GBNM) [19], the natural boundary integral equation method [20] and the
wavelet Galerkin BEMs. Comparing with these methods, the present method has several advantages:

(i) Comparing with the domain type methods (such as FEM and EFGM), the present method can reduce the dimension-
ality of the problem by one. Thus the method is especially suitable for the problems with an unbounded domain as all
boundary type methods.

(ii) Comparing with the boundary type methods, such as the GBNM, the GBEM and natural boundary integral equation
method, in which the system matrices are dense, the system matrix in the present method is a block diagonal
matrix and the computational complexity is reduced to linear scale from quadratic scale without any loss of
accuracy.

(iii) In general, we need special truncation strategies for obtaining sparse system matrix in other wavelet Galerkin BEMs,
which lead a truncation error, while the system matrix in the present method is a block diagonal matrix without any
truncation strategy, thus there is no any truncation error. Therefore, the present method has higher accuracy than
other wavelet Galerkin BEMs.

(iv) Because of the complicated expressions of the wavelets, the calculation of the matrix entries is difficult and time-con-
suming in other wavelet Galerkin BEMs. However, we can calculate analytically the matrix entries in present method
and the analytical formulae are simple. Therefore, the computational cost of the system matrix is lower than other
wavelet Galerkin BEMs.

The rest of this paper is outlined as follows. In Section 2, we introduce Quak’s interpolatory Hermite trigonometric wave-
lets and their properties to be used later. Section 3 gives a brief description of the BIE and its Galerkin variational formulation
for 2-D potential problems. Then, a detailed numerical implementation of the TWGBEM is described and the calculation for-
mulae of the matrix entries are provided in the next section. In Section 5, several error estimates of the approximate solu-
tions are deduced. Section 6 provides some numerical tests on theoretical results of the proposed method. Finally, the
conclusions are given in Section 7.

2. Interpolatory Hermite trigonometric wavelets

In this section, we shall give a brief introduction on the trigonometric scaling and wavelet functions. More details can be
found in [13].
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k¼1 sin kh denote the Dirichlet kernel and the conjugate kernel. For
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Then the following interpolatory properties hold for each k, n = 0,1, . . . ,2j+1 � 1:
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where hj,k = kp/2j denotes the nodes for interpolation.
For all j 2 N0, two wavelet functions w0
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1
j;0ðhÞ are defined as
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As for the scaling functions, for all j 2 N0 and n = 0,1, . . . ,2j+1 � 1, set w0
j;nðhÞ ¼ w0

j;0ðh� hj;nÞ and w1
j;nðhÞ ¼ w1

j;0ðh� hj;nÞ with the
same use of indices modulo 2j+1. The wavelet functions also have the similar interpolatory properties as the scaling functions.

Now, we can define the scaling function spaces Vjðj 2 N0Þ and the wavelet function spaces Wjðj 2 N0Þ as
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