
A new family of symmetric linear four-step methods for the
efficient integration of the Schrödinger equation and related
oscillatory problems

I. Alolyan a, Z.A. Anastassi b, T.E. Simos a,c,⇑,1

a Department of Mathematics, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
b Department of Sciences, School of Pedagogical & Technological Education (ASPETE), N. Heraklion, GR-14121 Athens, Greece
c Laboratory of Computational Sciences, Department of Computer Science and Technology, Faculty of Sciences and Technology,
University of Peloponnese, GR-22 100 Tripolis, Greece

a r t i c l e i n f o

Keywords:
Ordinary differential equations
Numerical solution
Symmetric linear multistep methods
Phase fitting
Schrödinger equation
Duffing’s problem
Oscillating solutions
Periodical solutions

a b s t r a c t

In this article we develop a family of three explicit symmetric linear four-step methods.
The new methods, with nullified phase-lag, are optimized for the efficient solution of the
Schrödinger equation and related oscillatory problems. We perform an analysis of the local
truncation error of the methods for the general case and for the special case of the Schrö-
dinger equation, where we show the decrease of the maximum power of the energy in rela-
tion to the corresponding classical methods. We also perform a periodicity analysis, where
we find that there is a direct relationship between the periodicity intervals of the methods
and their local truncation errors. In addition we determine their periodicity regions. We
finally compare the new methods to the corresponding classical ones and other known
methods from the literature, where we show the high efficiency of the new methods.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The numerical solution of the Schrödinger equation and related initial value problems with oscillating/periodic solutions
has attracted the interest of many researchers during the last decades [1–35]. We consider the one-dimensional time-
independent Schrödinger equation, which is given by

y00ðxÞ ¼ lðlþ 1Þ
x2 þ VðxÞ � E

� �
yðxÞ; ð1Þ

where lðlþ1Þ
x2 is the centrifugal potential, V(x) is the potential, E is the energy and WðxÞ ¼ lðlþ1Þ

x2 þ VðxÞ is the effective potential. It is
valid that limx?1V(x) = 0 and therefore limx?1W(x) = 0.

We consider E > 0 and divide [0,xmax], where xmax is the end of the integration interval and depends on the potential used,
into subintervals [ai,bi], so that on each subinterval W(x) is a constant with value Wi. Then the problem (1) can be expressed
by the approximation

y00i ¼ ðWi � EÞyi; whose solution is yiðxÞ ¼ Aie
ffiffiffiffiffiffiffiffiffi
Wi�E
p

x þ Bie�
ffiffiffiffiffiffiffiffiffi
Wi�E
p

x; Ai; Bi 2 R; and x 2 ½ai; bi�: ð2Þ
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We use the approach above, so that we can use an approximation Wi of the potential W(x). This approximation is used in
both the numerical integration and the local truncation error analysis of the method, when it is applied to the Schrödinger
equation. The error analysis reveals the important relation of the error to the energy, as we can see in Section 3.2.

In this work we produce a family of three explicit symmetric linear four-step methods with fourth algebraic order and
zero phase-lag for the numerical solution of the above equation and related oscillatory problems. More specifically, in
Section 2 we provide the necessary definitions and theorems. In Section 3 we present the development, truncation error
analysis and periodicity analysis of the method. In Section 4 we show the application of the method to the Schrödinger equa-
tion and related problems, as well as the comparison to other methods in terms of efficiency. Finally, in Section 5 we give
some conclusions on the results of this work.

2. Theory

For the numerical solution of the initial value problem

y00 ¼ f ðx; yÞ; ð3Þ

where f does not contain an explicit form of y0(x), we define a multistep method of the form

Xm

i¼0

aiynþi ¼ h2
Xm

i¼0

bif ðxnþi; ynþiÞ ð4Þ

with m steps, which can be used over the equally spaced intervals fxigm
i¼0 2 ½a; b� and h = jxi+1 � xij, i = 0(1)m � 1. The method

is called symmetric if ai = am�i and bi ¼ bm�i; i ¼ 0ð1Þ m
2

� �
.

Method (4) is associated with the operator

LðxÞ ¼
Xm

i¼0

aiuðxþ ihÞ � h2
Xm

i¼0

biu00ðxþ ihÞ; ð5Þ

where u 2 C2.

Definition 1. The multistep method (4) is called algebraic of order p if the associated linear operator L vanishes for any linear
combination of the linearly independent functions 1,x,x2, . . . ,xp+1.

2.1. Periodicity analysis of multistep methods

Here we will provide the necessary definitions and theorems to perform a periodicity analysis of multistep methods [7].
We apply the linear m-step method (4) to the scalar test equation

y00 ¼ �h2y ð6Þ

and then we solve the corresponding characteristic equation, which has m characteristic roots ki, i = 0(1)m � 1, where k0 and
k1 are the principal roots.

Definition 2 [8]. If the characteristic roots satisfy the conditions jkij 6 1, i = 0(1)m � 1 for all s = hh, then we say that the
method is unconditionally stable.

Definition 3 [8]. If the characteristic roots satisfy the conditions k0 = eI/(s), k1 = e�I/(s), and jkij 6 1, i = 2(1)m � 1 for all s < s0,
where s = hh and /(s) is a real function of s, then we say that the method has interval of periodicity 0; s2

0

� �
.

We deliberately use frequency h for the periodicity analysis that is different from frequency x used for phase-fitting. In
this way we will be able to produce the v–s plane, which gives the periodicity regions of the method.

Definition 4 [12]. A region of periodicity for a multistep method is a region of the v–s plane, throughout which the roots of
the corresponding characteristic equation satisfy the conditions of Definition 3. If the conditions are valid for the equality
only (jkij = 1, i = 2(1)m � 1), then the corresponding curve is called periodicity boundary.

If we set r ¼ v
s ¼ x

h , then we can say that the principal interval of periodicityis represented by the line segment from the
beginning of the axes to the intersection of line v = rs and the periodicity boundary. The secondary intervals of periodicity
can be defined along the line v = rs further from the beginning of the axes, but they are less important since the method must
always be periodic around the area where h ? 0.

2.2. Phase-lag analysis of symmetric multistep methods

When a symmetric 2k-step method is applied to the scalar test equation
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