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a b s t r a c t

We present two new coupling models for the three dimensional magnetostatic problem. In
the first model, we propose a new coupled formulation, prove that it is well posed and
solves Maxwell’s equations in the whole space. In the second, we propose a new coupled
formulation for the Local Discontinuous Galerkin method, the finite element method and
the boundary element method. This formulation is obtained by coupling the LDG method
inside a bounded domain X1 with the FEM method inside a layer X2 :¼ X nX1 where X is
a bounded domain which is made up of material of permeability l and such that X1 � X,
and with a boundary element method involving Calderon’s equations. We prove that our
formulation is consistent and well posed and we present some a priori error estimates
for the method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this work, we study Maxwell’s equations for magnetostatic problem in IR3. We consider a bounded domain X which is
made up of material of permeability l. Outside the domain X, in Xc, we assume that the permeability l is a constant and the
value of l in Xc is the permeability in vacuum. Inside X, we suppose that l is a function of x = (x1,x2,x3) 2 IR3 which is in
L1(X), and l(x) P c > 0 for all x 2X1. For the current density J, we suppose that it has a bounded support included in X,
and is in H0(div0,X) (for the definition of this space, see the next section). We study the following problem: for a given
field J, find the magnetic field h which solves the following magnetostatic problem model derived from Maxwell’s equations

rot h ¼ J; in IR3;

div lh ¼ 0; in IR3:

(
ð1:1Þ

The outline of this paper is as follows. In the next section some notations and general results are presented which are
necessary for the study of our model problem (1.1). In Section 3, by introducing a scalar potential and a vector potential,
we establish a variational formulation associated to the continuous problem, prove that it is well posed and show the equiv-
alence to the model problem. In Section 4 we present our coupled LDG-FEM and BEM formulation. For the LDG method, we
introduce auxiliary variables. The coupling of the LDG with FEM methods is introduced by using numerical fluxes. We prove
that our formulation is consistent and well posed. We finish this section by giving a primal formulation which we use in
Section 5 to establish error estimates. An h-version error analysis is carried out in Section 5 and concluding remark are pre-
sented in Section 6.
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2. Preliminaries and notations

Given a domain D in IR2 or IR3, we denote by Hs(D)d, d = 1, 2, 3, the Sobolev space of real valued functions with integer or
fractional regularity exponent s P 0, endowed with the norm k � ks,D; see, e.g., [10] for details.

For D � IR3, H(rot,D) and H(div,D) are the spaces of real valued vector functions u 2 L2(D)3 with rotu 2 L2(D)3 and di-
vu 2 L2(D), respectively, endowed with the graph norms. We denote by H1

0ðDÞ; H0ðrot;DÞ; H0ðdiv;DÞ the subspaces of
H1(D), H(rot,D), H(div,D) of functions with zero trace, tangential trace and normal trace on @D, respectively. The spaces
H(rot0,D) and H(div0,D) are the subspaces of H(rot,D) and H(div,D) consisting of irrotational and divergence-free functions,
respectively. Let (�, �) denote the scalar product on L2(D) or L2(D)3.

If C = @D, we define

H
1
2ðCÞ :¼ v 2 L2ðCÞ; kvk

H
1
2ðCÞ

<1
� �

;

where

kvk2

H
1
2ðCÞ

:¼ 1
diamðDÞ

Z
@D
jvðxÞj2 dsx þ

Z
@D

Z
@D

jvðxÞ � vðyÞj2

jx� yj2
dsxdsy ð2:1Þ

is the corresponding norm. See [1].
We denote by H�

1
2ðCÞ the dual space of H

1
2ðCÞ and by h,i the duality pairing between H

1
2ðCÞ and H�

1
2ðCÞ. More generally, if C

is a proper (non-empty) open subset of @D, we define H
1
2
00ðCÞ as the subspace of H

1
2ðCÞ consisting those functions defined on C

and whose extension by zero on oDnC belongs to H
1
2ð@DÞ. Let us recall that it is coincide with H

1
2ðCÞ provided that C is a sur-

face without boundary; see e.g., [2]. The space H
�1

2
00ðCÞ is the dual space of H

1
2
00ðCÞ.

2.1. Variational framework

Throughout this paper, X will denote a bounded Lipschitz polyhedron included in IR3 which is supposed to be both con-
nected and simply connected; in particular we suppose that X is such that H(rot,X) \ H0(div,X) ,! H1(X)3. C is the bound-
ary of X which is also assumed to be sufficiently smooth, connected and simply connected, and n is the unit outward normal
on C; we also set X0 :¼ IR3 nX.

2.2. Integral operators and Calderon’s equations

Now we turn to the study of the properties of integral operators which will be involved in the boundary integral method.
The integral operators V, K and W denote the single layer potential, the double layer potential and the hypersingular oper-

ator, respectively, and are defined by:

KuðxÞ ¼
Z

C
uðyÞ @

@ny
Eðx; yÞdsy 8u 2 H

1
2ðCÞ;

VuðxÞ ¼
Z

C
uðyÞEðx; yÞdsy 8u 2 H

�1
2 ðCÞ;

and

WuðxÞ ¼ � @

@nx

Z
C

uðyÞ @
@ny

Eðx; yÞdsy 8u 2 H
1
2ðCÞ:

Here, E(x,y) = (4pjx � yj)�1 is the fundamental solution for the three dimensional Laplacian problem and @
@ny

denotes the
weak derivate with respect to the variable y.

We have the following properties for these operators.

Lemma 2.1. The operators previously defined satisfy:

V : H�
1
2ðCÞ ! H

1
2ðCÞ;

K : H
1
2ðCÞ ! H

1
2ðCÞ;

K 0 : H
�1
2 ðCÞ ! H�

1
2ðCÞ;

W : H
1
2ðCÞ ! H�

1
2ðCÞ;

where K0 is the adjoint operator of K. Furthermore, all four operators are linear and continuous. V is symmetric, self-adjoint and
positive definite. W is symmetric, self-adjoint and positive semidefinite provided that the capacity of C is smaller than 1 which
is assumed here.
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