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a b s t r a c t

Two-grid methods for characteristic finite volume element solutions are presented for a
kind of semilinear convection-dominated diffusion equations. The methods are based on
the method of characteristics, two-grid method and the finite volume element method.
The nonsymmetric and nonlinear iterations are only executed on the coarse grid (with grid
size H). And the fine-grid solution (with grid size h) can be obtained by a single symmetric
and linear step. It is proved that the coarse grid can be much coarser than the fine grid. The
two-grid methods achieve asymptotically optimal approximation as long as the mesh sizes
satisfy H = O(h1/3).

� 2010 Published by Elsevier Inc.

1. Introduction

Convection–diffusion transport partial differential equations (PDEs) arise in petroleum reservoir simulation, subsurface
contaminant transport, and many other important applications. We are concerned with the numerical approximation of
the solutions of convection–diffusion problems in which the convection or transport dominates the diffusion. In this paper,
we shall consider combining the modified method of characteristics (MMOC) and two-grid method with finite volume element
method to treat the convection–diffusion problems given by
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where X = (a,b) � (c,d) is a rectangular domain, x = (x1,x2) � b(x) = (b1(x),b2(x))T and T > 0 is some fixed final time. For con-
venience, we assume that problem (1.1) is X-periodic, that is, all functions of (1.1) are spatially X-periodic [1–3]. Throughout
this paper we assume the coefficients of (1.1) satisfy

(a) 0 < a� 6 aðxÞ 6 a�; j b j¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 þ b2
2

q
6 b�;0 < c� 6 cðxÞ 6 c�;

(b) bðxÞ
cðxÞ

��� ���þ @
@xi

bðxÞ
cðxÞ

� ���� ��� 6 K1;

(c) f(u,x, t) holds uniformly Lipschitz condition with respect to u and @f
@xi

��� ���þ @f
@u

��� ���þ @2 f
@u2

��� ��� 6 K2; i ¼ 1;2; where a
*
, a*, b*, c

*
, c*,

K1 and K2 are positive constants. We also assume that the solution u of (1.1) satisfies
(d) u 2 L1(0,T; Wq,2(X) \ W2,1(X));
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for some q P 2.
The MMOC was first formulated for convection–diffusion equations by Douglas and Russell in [4]. And then extended by

Russell [5] to nonlinear coupled systems in two and three spatial dimensions. In the MMOC the time derivative and the con-
vection term are combined as a directional derivative along the characteristics, leading to a characteristic time-stepping pro-
cedure. Consequently, the MMOC stabilizes the governing PDEs, allowing for large time steps in a simulation without loss of
accuracy, and eliminates the excessive numerical dispersion and grid orientation effects present in many upwind methods
[4].

Two-grid method was first introduced by Xu [6,7] as a discretization method for linear (nonsymmetric or indefinite) and
especially nonlinear elliptic partial equations. The basic idea of this method is to solve a complicated problem (nonlinear,
nonsymmetric indefinite, etc.) on a coarse grid (with mesh size H) and then solve an easier problem (linear, SPD, etc.) on
a fine grid (with mesh size h and h� H) as correction. Later on, the two-grid method was further investigated by many
authors [8–10]. Dawson and Wheeler [8,9] applied this method combined with the mixed finite element method and the
finite difference method to a kind of parabolic problems; Li and Allen [10] have applied two-grid method combined with
mixed finite element method to reaction–diffusion equations; Chen, Huang et al., [11] have constructed a two-grid method
for expanded mixed finite element solution of semilinear reaction–diffusion equations.

Finite volume element (FVE) method, as a type of important numerical tool for solving differential equations, was widely
used in several engineering fields, such as fluid mechanics, heat and mass transfer and petroleum engineering. Perhaps the
most important property of FVE method is that it can preserve the conservation laws (mass, momentum, heat flux) on each
computational cell. This important property, combined with adequate accuracy and ease of implementation, has attracted
many researchers to do research. The theoretical framework and the basic tools for the analysis of FVE method have been
developed in the last two decades (see, e.g. [12–19]).

In this paper, we consider combining the MMOC and two-grid method with finite volume element method to treat prob-
lem (1.1). We choose two conforming finite element spaces VH and Vh on one coarse grid with mesh size H and one fine grid
with mesh size h� H as the two-grid spaces, respectively. We solve a nonsymmetric and nonlinear problem on the coarse
grid space, then we use the known coarse grid solution and a Taylor expansion to extrapolate the solution on the fine grid. On
the fine grid we only need to solve a symmetric and linear system. A remarkable fact about this simple approach is, as shown
in [6], that the coarse mesh can be quite coarse and still maintain a good accuracy approximation. A brief outline of this pa-
per is as follows. In Section 2, we give the partition and some preliminaries. In Section 3, we describe the characteristic FVE
method and the two-grid characteristic FVE method and give two algorithms for the two-grid FVE method. In Section 4, we
analyze error estimate of the characteristic FVE method. Section 5 is devoted to the error estimates for the two-grid char-
acteristic FVE method. In the last section, we give a conclusion.

Throughout this paper, let C or with its subscription stand for a generic positive constant which does not depend on the
the spatial or time discretization parameters and may be different at its different occurrences.

2. Preliminaries and notation

We will use the standard notation for Sobolev spaces Ws,p(X) with 1 6 p 61 consisting of functions that have general-
ized derivatives of order s in the space Lp(X). The norm of Ws,p(X) is defined by
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with the standard modification for p =1. In order to simplify the notation, we denote Ws,2(X) by Hs(X) and omit the index
p = 2 and X whenever possible; i.e., kuks,2,X = kuks,2 = kuks.

For the domain X, we consider a quasi-uniform regular triangulation Th consisting of closed triangle elements K such that
X ¼ [K2Th

K . We will use Nh to denote the set of all nodes or vertices of Th,

Nh ¼ fp : pis a vertex of element K 2 Th and p 2 Xg;

and N0
h ¼Nh \X.

Then we introduce a dual mesh T�h based on Th. There are various ways to introduce the dual mesh. Almost all approaches
can be described by the following general scheme. In each element K 2 Th consisting of vertices xi, xj, xk, select a point Q in K,
and select a point xij on each of the three edges xixj of K. Then connect Q to the points xij by straight lines rij. Then for a vertex
xi, we let Vi be the polygon whose edges are rij in which xi is a vertex of the element K. We call Vi a control volume centered at
xi. Obviously we have [xi2Nh

V i ¼ X, and the dual mesh T�h is then defined as the set of these control volumes.
We call the control volume mesh T�h quasi-uniform regular if there exists a positive constant C > 0, such that

C�1h2
6 measðViÞ 6 Ch2

; 8Vi 2 T�h;

where h is the maximum diameter of all elements K 2 Th.
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