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a b s t r a c t

A characteristic feature of many relevant real life networks, like the WWW, Internet, trans-
portation and communication networks, or even biological and social networks, is their
clustering structure. We discuss in this paper a novel algorithm to identify cluster sets of
densely interconnected nodes in a network. The algorithm is based on local information
and therefore it is very fast with respect other proposed methods, while it keeps a similar
performance in detecting the clusters.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Many real life networks like the WWW, Internet, transportation and communication networks, or even biological and
social networks have a strong clustering structure (they contain groups of vertices which are highly interconnected, having
many mutual neighbors). Here we consider the notion of cluster in a general way. Therefore, depending on the context, it can
be synonymous of community, class, module, etc. The problem of detecting clusters in a given network is an important issue
in social studies, biological (epidemiology, ecological webs, metabolic), and computer science (WWW, Internet, distributed
systems, cluster computing). Clusters are also interesting as they reflect hierarchical aspects and are related to classification
issues for information retrieval. Clusters also play an important role when executing most communication algorithms and
should be considered to improve their performance.

The construction of efficient and fast algorithms for the identification of the clustering structure in a generic network is
a nontrivial task. The first problem is the nonexistence of a precise definition of cluster. Intuitively, a network can be said
to have cluster structure if it consists of subsets of nodes, with many connections among the same subset, but few links
between subsets, see, for example [1,2]. Algorithms to detect these subsets have appeared in the literature and they can be
classified in two main groups (see the above two references for more details): hierarchical clustering methods (also known
as agglomerative), which consist of generating a tree (dendrogram) from a complete graph with as many vertices as the
original network and where each edge has a weight measuring how close the corresponding vertices are. Starting from the
set of all vertices with no edges between them, edges are iteratively added between pairs of vertices in the order of
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decreasing weight. From the tree one can then infer the different clusters. To obtain the weights, some algorithms consider
the spectrum of the adjacency matrix of the graph representing the network. The other class of algorithms is called
divisive. From the whole graph, by iteratively cutting the edges, one obtains a set of disconnected subgraphs identified
as clusters. Of course, the selection of the edges to be cut, i.e. identifying those connecting clusters, is the crucial point
of a divisive algorithm. Girvan and Newman (GN) [1] have recently provided a divisive algorithm based on the ‘‘edge
betweenness”: the betweenness of an edge is the number of shortest paths, between all pairs of vertices of a graph, that
go through this edge. If a graph is made of dense loosely interconnected clusters clearly all shortest paths between vertices
in different clusters will go through a few edges, joining the clusters, which will have a large betweenness value. The main
step of the GN algorithm is the computation of the edge betweenness of all the edges and then the removal of those with
the highest value. An iterative process allows the obtention of the clusters. This process, however, is computationally
expensive as for a graph with n vertices and m edges the cost is O(nm2), making it impractical even for relatively small
graphs.

More recently Newman [3] and Radicchi et al. [2] have provided faster, but less precise, methods. Newman’s new method
is based on what he calls ‘‘modularity” which measures the fraction of edges in a graph connecting different possible clusters
and selecting these clusters by using a standard greedy optimization algorithm. The algorithm is O((n + m)n) for the worst
case and O(n2) on a sparse graph. On the other hand Radicchi et al. use the ‘‘edge clustering coefficient” defined as the num-
ber of triangles to which a given edge belongs, divided by the number of triangles that might potentially include it, given the
degrees of the adjacent vertices. This algorithm is O(m2) in the worst case. A recent survey [4] compares these and other
clustering algorithms.

In this paper we introduce a fast and efficient deterministic algorithm which uses local information based on each vertex.
The algorithm is also agglomerative and has order O(mn), providing similar results to the GN method and other faster
methods.

2. Notation and definitions

We model networks as graphs. Given the graph G = (V,E) with vertex set V and edge set E, we will denote by Ck(v) the set
of vertices at a distance k from a vertex v. Sometimes we will write, for short, C(v) instead of C1(v). Thus, the degree of v is
degG(v) = d(v) :¼ jC(v)j. In terms of the adjacency matrix of G, Aij, we have dðv iÞ ¼

P
v j2V Aij ¼

P
jAij. We denote as D the max-

imum degree of a graph.
If we consider a subset of vertices C � V and a vertex vi 2 C, we can split the degree of vi into two contributions (with

respect to the subset where it belongs): dCðv iÞ ¼ din
C ðv iÞ þ dout

C ðv iÞ, where din
C ðv iÞ ¼

P
v j2CAij is the number of edges connect-

ing this vertex vi to other vertices of C and dout
C ðv iÞ ¼

P
v jRCAij is the number of edges towards vertices in the rest of the

graph.
A cluster is roughly defined as a part of a network where internal connections are denser than external ones. In the

implementation of our algorithm we consider a definition of cluster which is a normalized version of the definition of
‘‘cluster in the weak sense” as it appears in Radicchi et al. [2]. These authors define cluster in a weak sense as a subgraph
C such that

P
v i2Cdin

C ðv iÞ >
P

v i2Cdout
C ðv iÞ. This is in contrast with the definition of cluster in a strong sense which for a sub-

graph C is din
C ðv iÞ > dout

C ðv iÞ; 8v i 2 C. This last definition has also been proposed in [5] for the identification of web
clusters.

The problem of finding a partition of the vertex set which corresponds to an optimal clustering structure of the graph
and in particular to the identification of this optimality has led to the introduction of modularity by Newman [3]. It has
been shown that the problem is NP-hard [6]. Therefore it is of interest to provide algorithms that can produce near-optimal
solutions quickly. On the other hand even the modularity method does not work for extremal artificial cases [7], and very
often the experimentation with data coming from real networks provides best method to test the usefulness of a given
method.

In our algorithm we will use the other definitions: If C � V, degC(vi) is the number of edges between vi and all other
vertices in C. Then we have: degC(vi) 6 degG(vi).The average degree of a graph G(V,E) is avgdegðGÞ ¼

P
v i2V degGðv iÞ=jV j. The

normalized average degree of a set of vertices C is defined as

n avgdegðCÞ ¼
P

v i2C
degC ðv iÞ
degGðv iÞ

jCj

and we have 0 6 n_avgdeg(C) 6 1. This parameter is a good measure to characterize if a set of vertices C is clustered. It takes
into account, for each vertex in C, the distribution in and out of the set of its edges and also the total number of edges among
all vertices in C. Thus, it is a clear improvement over the other cluster characterizations mentioned above. The parameter, in
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