
An iterative logarithmic multiplier

Z. Babić a, A. Avramović a, P. Bulić b,*

a University of Banja Luka, Faculty of Electrical Engineering, Banja Luka, Bosnia and Herzegovina
b University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia

a r t i c l e i n f o

Article history:
Available online 21 July 2010

Keywords:
Computer arithmetic
Digital signal processing
Multiplier
Logarithmic number system
FPGA

a b s t r a c t

Digital signal processing algorithms often rely heavily on a large number of multiplications, which is both
time and power consuming. However, there are many practical solutions to simplify multiplication, like
truncated and logarithmic multipliers. These methods consume less time and power but introduce errors.
Nevertheless, they can be used in situations where a shorter time delay is more important than accuracy.
In digital signal processing, these conditions are often met, especially in video compression and tracking,
where integer arithmetic gives satisfactory results. This paper presents a simple and efficient multiplier
with the possibility to achieve an arbitrary accuracy through an iterative procedure, prior to achieving the
exact result. The multiplier is based on the same form of number representation as Mitchell’s algorithm,
but it uses different error correction circuits than those proposed by Mitchell. In such a way, the error
correction can be done almost in parallel (actually this is achieved through pipelining) with the basic
multiplication. The hardware solution involves adders and shifters, so it is not gate and power consum-
ing. The error summary for operands ranging from 8 bits to 16 bits indicates a very low relative error per-
centage with two iterations only. For the hardware implementation assessment, the proposed multiplier
is implemented on the Spartan 3 FPGA chip. For 16-bit operands, the time delay estimation indicates that
a multiplier with two iterations can work with a clock cycle more than 150 MHz, and with the maximum
relative error being less than 2%.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Multiplication has always been a hardware-, time- and power-
consuming arithmetic operation, especially for large-value oper-
ands. This bottleneck is even more emphasized in digital signal
processing (DSP) applications that involve a huge number of mul-
tiplications [3,6–8,12–14,18,20,22,25]. In many real-time DSP
applications, speed is the prime target and achieving this may be
done at the expense of the accuracy of the arithmetic operations.
Signal processing deals with signals distorted with the noise
caused by non-ideal sensors, quantization processes, amplifiers,
etc., as well as algorithms based on certain assumptions, so inaccu-
rate results are inevitable. For example, a frequency leakage causes
a false magnitude of the frequency bins in spectrum estimations.
The signal-compression techniques incorporate quantization after
a cosine or wavelet transform. When transform coefficients are
quantized, instead of calculating high-precision coefficients and
then truncating them, it is reasonable to spend less resources
and produce less accurate results before the quantization. In many
signal processing algorithms, which include correlation computa-
tions, the exact value of the correlation does not matter; only the

maximum of the correlation plays a role. Additional small errors
introduced with multipliers, as mentioned in the application de-
scribed and others, do not affect the results significantly and they
can still be acceptable in practice. Other applications that involve a
significant number of multiplications are found in cryptography
[4,5,10,11,19,26,27]. In applications where the speed of the calcu-
lation is more important than the accuracy, truncated or logarithm
multiplications seem to be suitable methods [14,21].

1.1. Integer multiplication methods

The simplest integer multiplier computes the product of two n-
bits unsigned numbers, one bit at a time. There are n multiplication
steps and each step has two parts:

1. If the least-significant bit of the multiplicator is 1, then the mul-
tiplicand is added to the product, otherwise zero is added to the
product.

2. The multiplicand is shifted left (saving the most significant bit)
and the multiplicator is shifted right, discarding the bit that was
shifted out.

A detailed implementation and description of this multiplica-
tion algorithm are given in [9]. Such an integer multiplication,

0141-9331/$ - see front matter � 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2010.07.001

* Corresponding author. Tel.: +386 1 4768361; fax: +386 1 4264647.
E-mail address: patricio.bulic@fri.uni-lj.si (P. Bulić).

Microprocessors and Microsystems 35 (2011) 23–33

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2010.07.001
mailto:patricio.bulic@fri.uni-lj.si
http://dx.doi.org/10.1016/j.micpro.2010.07.001
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


where the least-significant bit of the multiplicator is examined, is
known as the radix-2 multiplication.

To speed up the multiplication, we can examine k lower bits of
the multiplicand in each step. Usually, the radix-4 multiplication is
used, where two least-significant bits of the multiplicand are
examined. A detailed explanation of the radix-4 multiplication
can be found in [9].

Another way to speed up the integer multiplication is to use
many adders. Such an approach typically requires a lot of space
on the chip. The well-known implementation of such a multiplier
is an array multiplier [9], where n � 2 n-bits carry-save adders
and one n-bits carry-propagate adder are used to implement the
n-bits array multiplier.

1.2. Truncated multipliers

Truncated multipliers are extensively used in digital signal pro-
cessing where the speed of the multiplication and the area- and
power-consumptions are important. However, as mentioned be-
fore, there are many applications in DSP where high accuracy is
not important. The basic idea of these techniques is to discard
some of the less significant partial products and to introduce a
compensation circuit to reduce the approximation error [13,21,23].

1.3. Logarithmic multiplication methods

Logarithmic multiplication introduces an operand conversion
from integer number system into the logarithm number system
(LNS). The multiplication of the two operands N1 and N2 is per-
formed in three phases, calculating the operand logarithms, the
addition of the operand logarithms and the calculation of the anti-
logarithm, which is equal to the multiple of the two original oper-
ands. The main advantage of this method is the substitution of the
multiplication with addition, after the conversion of the operands
into logarithms. LNS multipliers can be generally divided into
two categories, one based on methods that use lookup tables and
interpolations, and the other based on Mitchell’s algorithm (MA)
[17], although there is a lookup-table approach in some of the
MA-based methods [16]. Generally, MA-based methods sup-
pressed lookup tables due to hardware-area savings. However, this
simple idea has a significant weakness: logarithm and anti-loga-
rithm cannot be calculated exactly, so there is a need to approxi-
mate the logarithm and the antilogarithm. The binary
representation of the number N can be written as:

N ¼ 2k 1þ
Xk�1

i¼j

2i�kZi

 !
¼ 2kð1þ xÞ ð1Þ

where k is a characteristic number or the place of the most significant
bit with the value of ‘1’, Zi is a bit value at the ith position, x is the
fraction or mantissa, and j depends on the number’s precision (it is
0 for integer numbers). The logarithm with the basis 2 of N is then:

log2ðNÞ ¼ log2 2k 1þ
Xk�1

i¼j

2i�kZi

 ! !
¼ log2ð2

kð1þ xÞÞ

¼ kþ log2ð1þ xÞ ð2Þ

The expression log2(1 + x) is usually approximated; therefore, loga-
rithmic-based solutions are a trade-off between the time consump-
tion and the accuracy.

This paper presents a simple iterative solution for multiplica-
tion with the possibility to achieve an arbitrary accuracy through
an iterative procedure, based on the same form of numbers repre-
sentation as Mitchell’s algorithm. The proposed multiplication
algorithm uses different error correction formulas than MA. In such
a way, the error correction can be started with a very small delay

after the main computation and can run almost in parallel with
the main computation. This is achieved through pipelining.

The paper is organized as follows: Section 2 presents the basic
Mitchell’s algorithm and its modifications, with their advantages
and weaknesses. Section 3 describes the proposed solution. In Section
4 the hardware implementations of the proposed algorithm are
discussed. Section 5 gives a detailed error analysis and the experi-
mental evaluation of the proposed solution. Section 6 shows the
usability of the proposed multiplier and Section 7 draws a conclusion.

2. Mitchell’s algorithm based multipliers

A logarithmic number system is introduced to simplify multi-
plication, especially in cases when the accuracy requirements are
not rigorous. In LNS two operands are multiplied by finding their
logarithms, adding them, and after that looking for the antiloga-
rithm of the sum.

One of the most significant multiplication methods in LNS is
Mitchell’s algorithm [17]. An approximation of the logarithm and
the antilogarithm is essential, and it is derived from a binary rep-
resentation of the numbers (1).

The logarithm of the product is

log2ðN1 � N2Þ ¼ k1 þ k2 þ log2ð1þ x1Þ þ log2ð1þ x2Þ ð3Þ
The expression log2(1 + x) is approximated with x and the logarithm
of the two numbers’ product is expressed as the sum of their char-
acteristic numbers and mantissas:

log2ðN1 � N2Þ � k1 þ k2 þ x1 þ x2 ð4Þ
The characteristic numbers k1 and k2 represent the places of the
most significant operands’ bits with the value of ‘1’. For 16-bit num-
bers, the range for characteristic numbers is from 0 to 15. The frac-
tions x1 and x2 are in range [0,1).

The final MA approximation for the multiplication (where
Ptrue = N1 � N2) depends on the carry bit from the sum of the mantis-
sas and is given by:

PMA ¼ ðN1 � N2ÞMA ¼
2k1þk2 ð1þ x1 þ x2Þ; x1 þ x2 < 1

2k1þk2þ1ðx1 þ x2Þ; x1 þ x2 P 1

(
ð5Þ

The final approximation for the product (5) requires the comparison
of the sum of the mantissas with ‘1’.

The sum of the characteristic numbers determines the most sig-
nificant bit of the product. The sum of the mantissas is then scaled
(shifted left) by 2k1þk2 or by 2k1þk2þ1, depending on the x1 + x2. If
x1 + x2 < 1, the sum of mantissas is added to the most significant
bit of product to complete the final result. Otherwise, the product
is approximated only with the scaled sum of mantissas. The pro-
posed MA-based multiplication is given in Algorithm 1.

Algorithm 1 (Mitchell’s algorithm).

1. N1, N2: n-bits binary multiplicands, PMA = 0:2 n-bits approxi-
mate product

2. Calculate k1: leading one position of N1

3. Calculate k2: leading one position of N2

4. Calculate x1: shift N1 to the left by n � k1bits
5. Calculate x2: shift N2 to the left by n � k2 bits
6. Calculate k12 = k1 + k2

7. Calculate x12 = x1 + x2

8. IF x12 P 2n (i.e. x1 + x2 P 1):
(a) Calculate k12 = k12 + 1
(b) Decode k12 and insert x12 in that position of Papprox

ELSE:
(a) Decode k12 and insert ‘1’ in that position of Papprox

(b) Append x12 immediately after this one in Papprox

9. Approximate N1 � N2 = PMA

24 Z. Babić et al. / Microprocessors and Microsystems 35 (2011) 23–33



Download English Version:

https://daneshyari.com/en/article/463145

Download Persian Version:

https://daneshyari.com/article/463145

Daneshyari.com

https://daneshyari.com/en/article/463145
https://daneshyari.com/article/463145
https://daneshyari.com

