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a b s t r a c t

Based on reasonable testing model problems, we study the preservation by symplectic
Runge–Kutta method (SRK) and symplectic partitioned Runge–Kutta method (SPRK) of
structures for fixed points of linear Hamiltonian systems. The structure-preservation
region provides a practical criterion for choosing step-size in symplectic computation.
Examples are given to justify the investigation.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

Consider the n-degree-of-freedom (d.o.f) Hamiltonian system

_z ¼ JrHðzÞ; J ¼
0 I

�I 0

� �
; ð1:1Þ

where H is a smooth scalar function of the extended phase space variables z 2 R2n, denoting the Hamiltonian, and J is the
Poisson matrix with I the n � n identity matrix. By introducing the canonically conjugate variables, z = (q,p), the above
system can be rewritten as

_q ¼ @H=@p; _p ¼ �@H=@q; ð1:2Þ

where q 2 Rn represents the configuration coordinates of the system and their canonically conjugate momenta p 2 Rn

represents the impetus gained by movement. As is well-known, Hamiltonian systems are introduced as a type of system
for which the existence of conservative quantities are automatic. System (1.2) possesses two remarkable properties:

(1) the solutions preserve the Hamiltonian, i.e.,

dH
dt
¼ 0; ð1:3Þ

(2) the corresponding flow is symplectic, i.e.,

d
dt
½dp ^ dq� ¼ 0: ð1:4Þ
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In the last two decades, enormous attention has been paid to numerical methods which preserve the symplecticity, namely,
symplectic integrators for Hamiltonian systems; we refer to the monographs Hairer et al. [1] and Sanz-Serna & Calvo [9] for
details and related literature. Theoretical analysis together with numerous numerical experiments has shown that symplectic
integrator not only produces improved qualitative numerical behaviors, but also allows for a more accurate long-time scale
computation than with general-purpose methods. In the symplectic integration study, a widely recognized fact is that the sym-
plecticity of a numerical integrator has little to do with its step-size. Particularly, for SRK and SPRK methods, their symplectic-
ities are only related to the coefficients (see Section 2 below). Therefore, in practical computations, one usually resorts to the
classical stability analyses to find a suitable range for choosing numerical step-sizes. However, in a recent paper [3], it is shown
that in some cases even the step-size of the symplectic Euler method satisfies the classical linear stability requirements, one
can still get periodic-two numerical solutions, or even chaotic solutions. That means, we need to require more stringent con-
ditions on step-sizes in addition to the classical stability considerations in simulations of Hamiltonian flows, even for symplec-
tic integrators. In order to gains some insights into this aspect, we shall investigate the influences induced by the numerical
discretization on the equilibrium structure of the underlying Hamiltonian system. The study would also provide practical cri-
teria for choosing step-sizes for symplectic integrators. It is recalled that for a general ODE of the form

_z ¼ f ðzÞ; z 2 Rm; f : Rm#Rm;

it may admit the presence of equilibrium point, namely, ~z 2 Rm such that f ð~zÞ ¼ 0, and the eigenvalues of the corresponding
stability matrixrzf ð~zÞ determine the type of the equilibrium point and its stability property. We would like to mention that
in [7], the preservation of stability for implicit midpoint and leapfrog methods applied to harmonic oscillator is considered.
In this paper, we shall present a more systematic study for general SRK and SPRK methods.

In the sequel, we are mainly concerned with the Runge–Kutta (RK) methods and partitioned Runge–Kutta (PRK) methods.
Henceforth, we customarily refer to an s-stage RK method by the triple Rs ¼ ðA; b; cÞ, with A ¼ ðaijÞsi;j¼1; b ¼ ðbiÞsi¼1 and
c ¼ ðciÞsi¼1 being, respectively, the coefficient matrix, weights and abscissae, and an s-stage PRK method by the pair
Rð1Þs �Rð2Þs . Next, we would like to review some of the classical linear stability concepts and by tracing the origins we can
thus draw forth our motivations for the current work. The probably most well known A-stability is introduced by Dahlquist
in 1960s (see, e.g., [2]). Applying Rs to the famous Dahlquist test equation

y0 ¼ ky; k 2 C; Rk < 0; ð1:5Þ

we get the following scheme

ylþ1 ¼ RðzÞyl; l ¼ 0;1;2; . . . ; and z ¼ kh; ð1:6Þ

with R(z) the stability function ofRs (see, Chapter IV.3, [2]). It is noted that the solution to (1.5) asymptotically decays to zero
as t ?1, and in order for the numerical scheme (1.6) to yield such qualitative behavior without any restriction on the step
size h, we naturally require that

jRðzÞj < 1; for any h > 0: ð1:7Þ

Methods satisfying (1.7) are called A-stable, and this concept has been playing an indispensable role in the numerical field.
Apparently, one can derive the same conclusion (1.7) for Rs when applying it to the following equation

y0 ¼ �ky; ð1:8Þ

where �k 2 C is the complex conjugate to k in Eq. (1.5). If we set k = a + ib with a; b 2 R and a < 0, it is easy to see that Eqs. (1.5)
and (1.8) are equivalent to the following system of ODE,

_x ¼ ax� by;
_y ¼ bxþ ay:

�
ð1:9Þ

System (1.9) has an equilibrium point (0,0) and its corresponding stability matrix is given by

J ¼
a �b

b a

� �
;

which has two eigenvalues k1,2 = a ± ib. Now, we apply Rs to (1.9) and get

xlþ1

ylþ1

� �
¼ Q

RðzÞ 0
0 Rð�zÞ

� �
Q�1 xl

yl

� �
; ð1:10Þ

with

z ¼ kh; �z ¼ �kh; k ¼ aþ ib and Q ¼ 1ffiffiffi
2
p i �1

1 �i

� �
:

Introducing the forward difference operators

dþt xl ¼
xlþ1 � xl

h
; dþt yl ¼

ylþ1 � yl

h
;
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