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a b s t r a c t

In this paper, the generations of multi-stripe chaotic attractors of fractional order system
are considered. The original fractional order chaotic attractors can be turned into a pattern
with multiple ‘‘parallel’’ or ‘‘ rectangular’’ stripes by employing certain simple periodic
nonlinear functions. The relationships between the parameters relate to the periodic func-
tions and the shape of the generated attractors are analyzed. Theoretical investigations
about the underlying mechanisms of the parallel striped attractors of fractional order sys-
tem are presented, with the fractional order Lorenz, Rössler and Chua’s systems as exam-
ples. Moreover, the periodic doubling striped route to chaos of fractional order Rössler
system and maximum Lyaponov exponent calculations are also given.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In recent years chaotic behaviors and complex patterns generated from simple nonlinear dynamics have been extensively
studied from different points of views, attracting the interests of researchers from various fields including particularly phys-
ics, biology, and engineering [1,6,9]. The studies of Chaos, including their butterfly-shapes [5], triple-well [14], multi-scrolls
[21], and spherical patterns of chaotic attractors [2] etc., have benefited the investigation of the intrinsic nonlinear struc-
tures, complex behaviors of natural system as well as man-made systems. Various chaotic patterns have been used actively
in practical applications such as complex pattern formation and secure communications [10,12].

The generation of complex (dynamic) patterns and phenomena is related to both the interaction between the systems and
their respective attractors. In [3], chaotic attractors with multiple ‘‘parallel’’ stripes and specific stripe induced intermittent
phenomena were studied, and multi-stripe chaotic attractors were produced on the basis of the special structure of the
Rössler system. Then continuous systems and even smooth systems were also found to be able to generate similar
phenomena in [4]. In these works, the ‘‘rectangular’’ striped attractor were produced by adding some periodic terms to _x
and _y equations of the Rössler system. Moreover,the periodic couplings of the Rössler system could also generate multiple
stripes [17]. In [18], the authors found the general method of multi-stripe chaotic attractors generations by employing some
simple nonlinear periodic functions for chaotic of ordinary differential systems. However, for fractional order chaotic
systems, whether the striped attractors can still occur by using the method proposed by [18] has not been discussed yet.

Fractional order differential equations have attracted increasing attention and have been applied in many ways in physics
and engineering in recent decades [11,15,16]. Chaos can also be generated from them, such as the fractional order Rössler
system [7], the fractional order Chua’s system [22], the fractional order Chen system [8].
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In this paper, we discuss the generation of multi-stripe attractors from fractional order chaotic systems by using the
method of [18]. The theoretical analysis is also given. Numerical simulations on various fractional order chaotic attractors
verify the generality of the method.

The rest of the paper is organized as follows. The preliminaries about the fractional order dynamic systems are given in
Section 2. The general method using periodic functions to produce fractional order attractors with multiple parallel stripes is
testified in Section 3, and the theoretical results about the generation of ‘‘parallel’’ multi-stripe attractors from the fractional
order dynamic system are given. In Section 4, multi-stripe attractors in rectangular forms are studied by the same technical
line. Finally, some concluding remarks are given in Section 5.

2. Fractional calculus

In this section, we review the basic definition of the Riemann–Liouville fractional integrals and the Caputo’s fractional
derivatives and introduce our method of numerical simulations. Some propositions to be used in the following sections
are also given.

Definition 2.1 (see[11]). Provided b > 0, the operator Jb defined on L1½0; T� by

JbyðtÞ ¼ 1
CðbÞ

Z t

0
ðt � sÞb�1yðsÞds ð1Þ

for t 2 [0,T], is called the Riemann–Liouville fractional integral operator of order b, where L1½0; T� :¼ fyðtÞ : ½0; T� ! R; yðtÞ is
measurable on [0,T] and

R T
0 jyðtÞjdt <1g and C(�) is the Gamma function.

Definition 2.2 (see[11]). The operator Da(n � 1 < a 6 n) defined by

DayðtÞ ¼ Jn�a dn

dtn yðtÞ ¼ 1
Cðn� aÞ

Z T

0
ðt � sÞn�a�1 dn

dsn
yðsÞds ð2Þ

for t 2 [0,T] and yðtÞ 2 Cn½0; T�, is called the Caputo differential operator of order a.
In this paper, we simulate numerically the fractional order initial value problem

DaXðtÞ ¼ Fðt;XðtÞÞ; t 2 ð0; T�; 0 < a 6 1;

Xð0Þ ¼ X0;

(
ð3Þ

with the following first order numerical method (see [20])

eXj ¼ haFðtj; eXjÞ �
Xj

k¼1

xk
eXj�k �

1
jaCðj� aÞ

�
Xj

r¼0

xr

 !
X0 þ ha

taj
X0; j ¼ 1;2; . . . ;N; ð4Þ

where

X : ½0; T�# Rm; F : ½0; T� � Rm # Rm; Fi : ½0; T� � Rm # R; X0 ¼ X0
1;X

0
2; . . . ;X0

m

h iT
; eXj � XðtjÞ;

DaXðtÞ ¼ DaX1ðtÞ;DaX2ðtÞ; . . . ;DaXmðtÞ
� �T

; Fðt;XÞ ¼ F1ðt;XÞ; F2ðt;XÞ; � � � ; Fmðt;XÞ½ �T ; h ¼ T=N; tj ¼ jh;

j ¼ 0;1;2; . . . ;N; x0 ¼ 1; xk ¼ 1� aþ 1
k

� �
xk�1; k ¼ 1;2; . . . ;N:

The numerical method (4) is in accord with (5.10) in [20] when m = 1.

Proposition 2.1. If 0 < a 6 1, f is the operator from C1½0;þ1Þ to C1ð�1;þ1Þ, where x 2 C1½0;þ1Þ, then, $n 2 [0, t],
s.t. J1�a(f0(x)x0) = f0(x(n))Dax.

Proof. From the definition of the Caputo operator, we have

Daf ðxÞ ¼ J1�a d
dt

f ðxÞ ¼ 1
Cð1� aÞ

Z T

0
ðt � sÞ�af 0ðxðsÞÞx0sds:

Applying the mean value theorem of integrals, then

Daf ðxÞ ¼ f 0ðxðnÞÞ
Cð1� aÞ

Z T

0
ðt � sÞ�ax0sds ðn 2 ½0; t�Þ ¼ f 0ðxðnÞÞDax: �
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