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a b s t r a c t

In this article we present four analytic recurrence algorithms for the multivariable Adomi-
an polynomials. As special cases, we deduce the four simplified results for the one-variable
Adomian polynomials. These algorithms are comprised of simple, orderly and analytic
recurrence formulas, which do not require time-intensive operations such as expanding,
regrouping, parametrization, and so on. They are straightforward to implement in any sym-
bolic software, and are shown to be very efficient by our verification using MATHEMATICA
7.0. We emphasize that from the summation expressions, An ¼

Pn
k¼1Uk

n for the multivari-
able Adomian polynomials and An =

Pn
k¼1f ðkÞðu0ÞCk

n for the one-variable Adomian polynomi-
als, we obtain the recurrence formulas for the Uk

n and the Ck
n. These provide a theoretical

basis for developing new algorithmic approaches such as for parallel computing. In partic-
ular, the recurrence process of one particular algorithm for the one-variable Adomian poly-
nomials does not involve the differentiation operation, but significantly only the arithmetic
operations of multiplication and addition are involved; precisely C1

n ¼ un ðn P 1Þ and
Ck

n ¼ 1
n

Pn�k
j¼0 ðjþ 1Þujþ1Ck�1

n�1�j ð2 6 k 6 nÞ. We also discuss several other algorithms previ-
ously reported in the literature, including the Adomian–Rach recurrence algorithm [1]
and this author’s index recurrence algorithm [23,36].
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1. Introduction

The Adomian decomposition method (ADM) and its modifications [1–11] are practical techniques for solving functional
equations. The method, which requires neither linearization nor perturbation, efficiently works for a wide class of initial
value or boundary value problems, encompassing linear, nonlinear, and even stochastic systems, see e.g. [3–9,11–18].

We introduce the ADM by using the initial value problem for a second order ordinary differential equation in the Adomian
form rather than the usual Picard form

Luþ Ruþ Nu ¼ gðtÞ; ð1Þ

where L ¼ d2

dt2 ;R is the remaining linear part containing the lower order derivatives, N represents a nonlinear analytic
operator, u(0) and u0(0) are the specified initial conditions, and g(t) is a given bounded, analytic function.

Operating with L�1, where L�1 is the twofold definite integral operator from 0 to t, on both sides of (1) leads to

u ¼ uð0Þ þ u0ð0Þt þ L�1g � L�1Ru� L�1Nu: ð2Þ

The method supposes a decomposition series solution and decomposes the nonlinear term Nu into a series

u ¼
X1
n¼0

un; Nu ¼
X1
n¼0

An; ð3Þ
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where the An, depending on the solution components u0, u1, . . ., un, are called the Adomian polynomials, and are defined for
the nonlinearity Nu = f(u) by the definitional formula [1–6]

An ¼
1
n!

@n

@kn f
X1
k¼0

ukk
k

 !" #
k¼0

; n ¼ 0;1;2; . . . ; ð4Þ

where k, the analytic parameter, is simply a grouping parameter of convenience. The first five Adomian polynomials are

A0 ¼ f ðu0Þ;
A1 ¼ f 0ðu0Þu1;

A2 ¼ f 0ðu0Þu2 þ f 00ðu0Þ
u2

1
2!
;

A3 ¼ f 0ðu0Þu3 þ f 00ðu0Þu1u2 þ f ð3Þðu0Þ
u3

1
3!
;

A4 ¼ f 0ðu0Þu4 þ f 00ðu0Þ u1u3 þ
u2

2
2!

� �
þ f ð3Þðu0Þ

u2
1u2

2!
þ f ð4Þðu0Þ

u4
1

4!
:

ð5Þ

The decomposition method consists in identifying the un’s by means of the recursion scheme

u0 ¼ uð0Þ þ u0ð0Þt þ L�1g; ð6Þ
unþ1 ¼ �L�1Run � L�1An; n ¼ 0;1;2; . . . : ð7Þ

The convergence of the method has been extensively discussed in [10,19–23]. In this paper the solution of the equation is
viewed as a decomposition of the pre-existent, unique, analytic function, which identically satisfies the mathematical model
under consideration to be determined by recursion.

The n-term approximation of the solution, /n ¼
Pn�1

i¼0 ui, requires the Adomian polynomials A0, A1, . . ., An�2 in the nonlin-
ear case. The computation of the Adomian polynomials is a key procedure for the method and different algorithms for the
Adomian polynomials have been proposed in order to improve computational efficiency [1,10,21–32].

Adomian and Rach [1] gave the first recurrence algorithm for the Adomian polynomials. It can be expressed as

An ¼
1
n!

Xn

i¼1

f ðiÞðu0Þ � cði; nÞjk¼0; n P 1; ð8Þ

with the recurrence rule for c(i,n)

cði; jÞ ¼ cði� 1; j� 1Þduk

dk
þ dcði; j� 1Þ

dk
; 1 6 i 6 j; ð9Þ

where uk represents the analytic parametrization

uk ¼
X1
k¼0

ukk
k

and letting

cð0;0Þ ¼ 1; cð0; jÞ ¼ 0 ðj P 1Þ; cði; jÞ ¼ 0 ði > jÞ: ð10Þ

See also [2–4,6]. This recurrence algorithm will be further discussed in Section 4.
Rach [24] gave the first formula discarding the analytic parametrization, which is called Rach’s Rule, see Page 16 in [4] and

Page 51 in [6],

An ¼
Xn

k¼1

f ðkÞðu0ÞCðk;nÞ; n P 1; ð11Þ

where C(k,n) are the sums of all possible products of k components from u1, u2, . . ., un, whose subscripts sum to n, divided by
the factorial of the number of repeated subscripts, that is

Cðk;nÞ ¼
X

Pn

j¼1
jpj¼n;

Pn

j¼1
pj¼k

up1
1 up2

2 . . . upn
n

p1!p2! . . . pn!
: ð12Þ

We note that the c(i,n) in Eq. (8) is related to the parameter k, while the C(k,n) in Eq. (11) does not include k.
Riganti [25] gave a convenient recurrence formula for An, see Corollary 2 in this article. Abbaoui and Cherruault [21,22]

denoted the An by

An ¼
X

Pn

j¼1
jpj¼n

f
ð
Pn

j¼1

pjÞ
ðu0Þ

up1
1 up2

2 . . . upn
n

p1!p2! . . . pn!
; n > 0 ð13Þ

and gave another expression by dividing n into all possible decreasing sequences of nonnegative integers.
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