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a b s t r a c t

Split-step orthogonal spline collocation (OSC) methods are proposed for one-, two-, and
three-dimensional nonlinear Schrödinger (NLS) equations with time-dependent potentials.
Firstly, the NLS equation is split into two nonlinear equations, and one or more one-dimen-
sional linear equations. Commonly, the nonlinear subproblems could be integrated directly
and accurately, but it fails when the time-dependent potential cannot be integrated
exactly. In this case, we propose three approximations by using quadrature formulae,
but the split order is not reduced. Discrete-time OSC schemes are applied for the linear sub-
problems. In numerical experiments, many tests are carried out to prove the reliability and
efficiency of the split-step OSC (SSOSC) methods. Solitons in one, two, and three dimen-
sions are well simulated, and conservative properties and convergence rates are demon-
strated. We also apply the ways of solving the nonlinear subproblems to the split-step
finite difference (SSFD) methods and the time-splitting spectral (TSSP) methods, and the
approximate ways still work well. Finally, we apply the SSOSC methods to solve some
problems of Bose–Einstein condensates.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following initial-boundary value problem (IBVP) of the nonlinear Schrödinger (NLS)
equation:
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. Vd(x, t) is a given real
function. When Vd(x, t) � 0, Eq. (1) becomes the usual cubic NLS equation [1]. When a = 1/2 and
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Eq. (1) is the Gross–Pitaevskii equation studied in [2,3], which is usually used to model the properties of a Bose–Einstein
condensate (BEC) at extremely low temperatures.

Computing the inner product of Eq. (1) with w, and taking the imaginary part, we have
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This is a conserved quantity of the IBVP (1)–(3). When Vd(x, t) � Vd(x), we compute the inner product of Eq. (1) with @w/@t,
and take the real part of the result. Then we obtain another conserved quantity as follows:
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Many studies have been made for NLS equations, and one may refer to Refs. [2–5] and references therein. In these re-
search works, the split step technique is interesting which could be combined with the spectral method [2,4] or the finite
difference (FD) method [3]. In this paper, we try to apply this technique with discrete-time orthogonal spline collocation
(OSC) methods for NLS equations in one, two, and three dimensions, respectively.

Several researches on the OSC method for NLS equations have been made. For one dimension, semi-discretization OSC
method is utilized for the cubic NLS equation [6], and is extended to the equation with power nonlinearity and also to
the generalized one [7]. In [8,9], alternating direction implicit (ADI) OSC method is analyzed for the linear Schrödinger equa-
tion in two space variables. ADI OSC method is also applied to the two-dimensional NLS equation [9], where extrapolated
technique is used for the nonlinear term. So far, few OSC methods have been found to consider three-dimensional problems.

In this paper, the OSC approach is combined with the split-step method to construct new schemes named after split-step
OSC (SSOSC) schemes. These schemes are effective for solving the one-, two-, and also for the three-dimensional NLS equa-
tions. Especially for the multidimensional cases, the SSOSC methods could be implemented smoothly by utilizing the funda-
mental property of the piecewise Hermite interpolation. And owing to the split step technique, the nonlinear term is dealt
with easily without the extrapolation.

This paper is organized as follows. In Section 2, we introduce some preliminaries. Section 3 is devoted to formulate split-
step OSC methods. In Section 4, the implementation of the SSOSC schemes are discussed. Extensive experiments are carried
out in Section 5. Finally, Section 6 draws some conclusions.

2. Preliminaries

Let X3 = [xL,xR] � [yL,yR] � [zL,zR], and fxkgNx
k¼0; fylg

Ny

l¼0 and fzmgNz
m¼0 be partitions of [xL,xR], [yL,yR] and [zL,zR], respectively,

such that

xL ¼ x0 < x1 < � � � < xNx�1 < xNx ¼ xR;

yL ¼ y0 < y1 < � � � < yNy�1 < yNy
¼ yR;

zL ¼ z0 < z1 < � � � < zNz�1 < zNz ¼ zR:

Denote hx
k ¼ xk � xk�1; k ¼ 1;2; . . . ;Nx; hy

l ¼ yl � yl�1; l ¼ 1;2; . . . ;Ny and hz
m ¼ zm � zm�1; m ¼ 1;2; . . . ;Nz. We divide the

interval [0,T] by the partition ftngJ
n¼0, where tn = ns and s = T/J.

Let M0
x ; M

0
y and M0

y be spaces of piecewise Hermite cubic defined by
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where P3 denotes the set of all polynomials of degree63. LetM0
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be the sets of Gauss points defined by

nx
k;k1
¼ xk�1 þ hx

kkk1
; k ¼ 1;2; . . . ;Nx; k1 ¼ 1;2;

ny
l;l1
¼ yl�1 þ hy

l kl1 ; l ¼ 1;2; . . . ;Ny; l1 ¼ 1;2;

nz
m;m1
¼ zm�1 þ hz

mkm1 ; m ¼ 1;2; . . . ;Nz; m1 ¼ 1;2;

where
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p
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3
p
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which are nodes of the 2-point Gauss–Legendre quadrature on [0,1] with corresponding weights x1 = x2 = 1/2. Denote
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