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a b s t r a c t

In this paper, we derive a numerical recipe for the calculation of the inversion of the con-
fluent Vandermonde matrix. The main result of this article does not require any symbolic
calculations and therefore can be performed by a numerical algorithm implemented either
in any high level (like Matlab or Mathematica) or low level programming language (C/C++/
Java/Pascal/Fortran, etc.). The computational complexity of the presented algorithm is of an
O(N2) class being, by the linear term, better than the ordinary Gauss elimination method.
Moreover, a ready to use C++ full implementation of the algorithm is attached.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we derive a numerical algorithm for the calculation of the inversion of the confluent Vandermonde matrix.
The main result of this article is presented by Theorems 5.1 and 6.1. It does not require any symbolic calculations and there-
fore can be performed by a numerical algorithm implemented in any high (like Matlab or Mathematica) or low level pro-
gramming language (C/C++/Java/Pascal/Fortran, etc.).

The paper is organized as follows: Section 2 justifies the importance of the confluent Vandermonde matrices, in Section 3
we performed a comparison with other methods, Section 4 provides the necessary theoretical background, Section 5 – the
algorithm for the auxiliary coefficients calculation, Section 6 – the final algorithm for calculating the desired inversion, in
Section 7 we determined the computational complexity of the presented algorithm, in Section 8 we presented the sketch
of the proposed algorithm, in Section 9 we give an example from real application, in Section 10 we tested the behavior
for the poorly conditioned matrices and in Section 11 we summarized the article. In the appendix we presented a ready
to use C++ implementation of the algorithm.

2. Importance of the confluent Vandermonde matrices

The confluent Vandermonde matrices we formally defined in Section 4. They arise in a broad range of both theoretical and
practical problems. Below we surveyed the problems which make it necessary to inverse the confluent Vandermonde
matrices.

� Linear, ordinary differential equations: the Jordan canonical form matrix of the ODE in the Frobenius form is a confluent
Vandermonde matrix [3, pp. 86–95].
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� Control problems: investigating of the so-called controllability [7] of the higher order systems leads to the problem of
inverting the classic Vandermonde matrix [11] (in case of distinct zeros of the system characteristic polynomial) and
the confluent Vandermonde matrix [12] (for systems with multiply characteristic polynomial zeros). As the examples
of the higher order models of the physical objects may be mentioned the Timoshenko’s elastic beam equation [15]
(4th order) and the Korteweg-de Vries equation of waves on shallow water surfaces [1] (3rd, 5th and 7th order).
� Interpolation: apart from the ordinary polynomial interpolation with single nodes we consider the Hermite interpolation,

allowing the multiple interpolation nodes. That problem leads to the system of linear equations, with the confluent Van-
dermonde matrix [6, pp. 363–373].
� Information coding: the confluent Vandermonde matrix is used in coding and decoding the information in the Hermi-

tian’s code [8].
� Optimization of the non-homogeneous differential equations [2].

3. Comparison with other methods

In the literature the problem of inverting the confluent Vandermonde matrices has been tackled several times:

� The article [5] proposes a method requiring hand-held calculation of the fractional expansion of the inverse of the char-
acteristic polynomial. Moreover, the numerical part of the proposed method is of the weak O(N4) class.
� The method proposed in [4] optimizes the numerical part of the article [5], but still requires performing the same sym-

bolic fractional expansion.
� The work [13] requires computing the arbitrary order derivatives of the inverse characteristic polynomial.

Summarizing, previous results on this topic cannot be performed numerically as they require either manual calculation of
a series of the derivatives (3) or the knowledge of the fractional expansion of the inverse of the characteristic polynomial.

4. Theoretical background

First let us explain what the confluent Vandermonde matrix V is. Let k1,k2, . . . ,kr be given pair wise distinct zeros of the
polynomial pðsÞ ¼ ðs� k1Þn1 � � � ðs� krÞnr with n1 + � � � + nr = n. The confluent Vandermonde matrix V related to the zeros of p(s)
is defined to be the n � n matrix V = [V1V2 � � �Vr], where the block matrix Vk = V(kk,nk) is of order n � nk having elements [4,13]

½Vðkk;nkÞ�ij ¼
i� 1
j� 1

� �
ki�j

k ; for i P j;

0; otherwise

8><
>:

for k = 1,2, . . . ,r; i = 1,2, . . . ,n and j = 1,2, . . . ,nk.
The articles [4,13] present the following theorem for inverting the confluent Vandermonde matrices:

Theorem 4.1. The inverse of the confluent Vandermonde matrix V has the form V�1 ¼ WT
1 WT

2 � � � WT
r

� �T
. The column

vectors hki of the block matrix Wk = [hkn, . . . ,hk1] in the inverse confluent Vandermonde matrix V�1 may be recursively computed by
the following scheme:

hk1 ¼ ½Kk;1 � � �Kk;nk
�T ;

hk2 ¼ Jkðkk;nkÞhk1 þ a1hk1;

..

.

hkn ¼ Jkðkk;nkÞhkðn�1Þ þ an�1hk1;

8>>>>><
>>>>>:

k ¼ 1;2; . . . ; r; ð1Þ

where kk is the eigenvalue, ak are the coefficients of the characteristic polynomial, Jk(kk,nk) is the elementary Jordan block (2):

Jkðkk;nkÞ ¼

kk 1 � � � 0

kk 1 ..
.

. .
. . .

.

kk 1
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nk�nk

; k ¼ 1;2; . . . ; r ð2Þ

and Kk,j are the auxiliary coefficients expressed by the formula (3):

Kk;jðsÞjs¼kk
¼ 1
ðnk � jÞ!

dðnk�jÞ

dsðnk�jÞ
1

pðsÞ ðs� kkÞnk

� �
s¼kk

;
j ¼ nk; . . . ;1;
k ¼ 1;2; . . . ; r:

ð3Þ
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