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a b s t r a c t

Power series type solutions are given for a wide class of linear and q-dimensional nonlinear
Volterra equations on Rp. The basic assumption on the kernel K(x,y) is that K(x,xt) has a
power series in x. For example, this holds for any analytic kernel.

The kernel may be strongly singular, provided certain constants are finite. One and only
one such power series solution exists. Its coefficients are given by a simple iterative for-
mula. In many cases this may be solved explicitly. In particular an explicit formula for
the resolvent is given.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Volterra integral equations are a special type of integral equations introduced by Vito Volterra. They have applications in
demography, the study of viscoelastic materials, and in insurance mathematics through the renewal equation. There has
been a great deal of developments on the theory and applications of Volterra integral equations. For most comprehensive
accounts, see Agarwal et al. [2] and Agarwal and O’Regan [1].

This note shows that a very large class of Volterra integral equations on Rp have easily computed power series solutions.
We refer here not to the Neumann power series in k but to powers of the ‘‘x’’ variable in Rp. This method of solution is appeal-
ing because it is straightforward and simple to use, and once found at a point x > 0 in Rp is also found throughout 0 6 y 6 x.
So, it avoids any need for numerical integration. We have not been able to find any references to this method in Mathemat-
ical Reviews or any text on integral equations.

We assume that the kernel can be expressed in the form

Kðx;xtÞ ¼
X1

n¼I�1

xnknðtÞ; ð1:1Þ

for x and t in Rp, where I is a (vector) integer in Rp, 1 is the vector of 1’s, summation is over integers n P I � 1 in Rp, that is
over n1 P I1 � 1, . . . ,np P Ip � 1,

xt ¼ ðx1t1; . . . ; xptpÞ; xn ¼ xn1
1 � � � x

np
p :

When (1.1) involves only a finite sum, the kernel is not degenerate in the usual sense. For example, the kernel

Kðx; yÞ ¼ xaðx� yÞbyc; ð1:2Þ

where a + b + c = m, an integer, satisfies (1.1) with only one term, xmkm(t), where km(t) = (1 � t)btc. Its resolvent is given
explicitly in Section 6.
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Sections 2 and 3 deal with linear equations of the second and first kind. Sections 4 and 5 deal with nonlinear equations of
the second and first kind.

In each case, the power series type solution is found to be unique – even if the kernel is strongly singular. The nth coeffi-
cient of the power series solution is given in terms of the previous coefficients. There is no need to deal with equations of the
first kind by transforming them to equations of the second kind. In many cases the iterative solution may be solved explicitly.
In particular this may be done for linear equations of the second kind: an explicit form for their resolvent is given in Section 6.

Section 7 considers what kernels are transformable to type (1.1) by one to one transformations. For example, it shows that
this allows us to drop the requirement in (1.2) that a + b + c be an integer.

If I is not positive there is no guarantee that the solution found is unique. Indeed in Section 8 we obtain nontrivial solu-
tions to f ðxÞ ¼

R x
0 Kðx; yÞf ðyÞdy when I = 0 by an extension of Frobenius’s technique.

2. Linear equations of the second kind

In this section, we give an iterative solution to

f ðxÞ ¼ gðxÞ þ
Z x

0
Kðx; yÞf ðyÞdy ð2:1Þ

on X = Rp or (0,1)p. A different form of this solution will be given in Section 6.
In order to allow for ‘forcing functions’ g(x) such as x1/2 + x�1/3 as well as analytic functions, we shall assume g(x) can be

expressed in the form

gðxÞ ¼
X1
n¼L

xn
Z 0

�1
xu
þgnðuÞdmðuÞ; ð2:2Þ

where L is a given integer in Rp, x+ is the vector in Rp with ith component jxij, m is a measure on (�1,0] � Rp, and �1 is the
vector (�1, . . . ,�1)0.

So, essentially we are dealing with g(x) of the form
R1

L�1 xud�mðuÞ. For example, g(exp(�x)) may be any Laplace transform on
Rp, where exp (�x) = (exp(�x1), . . . , exp(�xp)).

It is easy to see that (2.1) has a solution of the same form

f ðxÞ ¼
X1
n¼L

xn
Z 0

1
xu
þfnðuÞdmðuÞ; ð2:3Þ

if and only if for u in (�1,0]p any point of change of m,

ðfnðuÞ � gnðuÞÞIðn P LÞ ¼ bnðuÞIðn P Iþ LÞ; ð2:4Þ

where

bnðuÞ ¼
Xn�I

m¼L

anmðuÞfmðuÞ; anmðuÞ ¼
Z 1

0
tmþukn�m�1ðtÞdt:

We now drop the argument u and show how to solve (2.4) interactively.
There are three overlapping cases, depending on whether I has positive or negative components or both. Set I+ = max(I,0)

and I� = max(�I,0) componentwise. So, I = I+ � I�.
Case 1: I i 0, that is I+ – 0, that is I has at least one component positive. An iterative solution is given by

fn ¼ gn þ
Xn�I

m¼L

anmfm

for n P L, assuming that these {anm} are finite. (The argument u has been suppressed. A sum is taken to be zero if its range is
empty: in this case, if n j I + L.) For example,

fn ¼

gn; for L 6 n P L þ I;

gn þ
Pn�I

m¼L
anmgm ¼ Gn say; for L þ Iþ 6 n j L þ 2I;

gn þ
P

1
anmgm þ

P
2

anmGm; for L þ 2Iþ 6 n j L þ 3I;

8>>>><>>>>:
where

P
1 sums over {L 6m j L + I} and

P
2 over {L + I+ 6m 6 n � I}.

Case 2: I j 0, that is I� – 0, that is I has at least one component negative. An iterative solution is given by

fn ¼
0; if L 6 n j L � I;

�a�1
nn �gnþI þ fnþI �

P0n
m¼L

�anmfm

� �
; for n P L þ I�;

8<:
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