
Extending an embedded RISC microprocessor for efficient translation based
Java execution q

Isidoros Sideris *, Kiamal Pekmestzi, George Economakos
Microprocessors and Digital Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens,
9 Heroon Polytechneiou, Athens 15780, Greece

a r t i c l e i n f o

Article history:
Available online 10 July 2009

Keywords:
Java processor
Codesigned virtual machine
Embedded Java

a b s t r a c t

Java has gained great popularity in embedded appliances such as set-top boxes, smart phones and other
hand held devices. In this paper we propose a translation based hw/sw codesigned Java virtual machine
architecture, which extends a typical embedded RISC processor. The architectural extensions we propose
include special instructions that accelerate translated blocks dispatch and security checks for arrays and
objects. The extensions are done in a way that operating systems support is maintained, something that
makes their adoption more attractive. Benchmarking using Embedded Caffeine Mark (ECM) benchmarks,
showed significant speedups, especially when high performance RISC processors are employed.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Java has been popular in the embedded systems market. Smart
phones, set-top boxes and other embedded appliances are Java en-
abled. Java brings compatibility and security, but not at no cost.
The extra software layer, which intermediates between the Java
program binary and the underlying CPU, degrades performance
significantly.

In PC and servers domain, aggressive dynamic translators which
profile program execution and perform optimizations based on
information collected in runtime, are in abundance. In embedded
systems domain, just-in-time (JIT) compilers [15] can be employed,
but not with too sophisticated optimizations, since their increased
memory footprint and the greater translation cost may be prohib-
itive. Java processors [28,23,32] that execute Java bytecodes di-
rectly in hardware, are also a common solution. They provide
similar performance, with reduced memory footprint, but some-
times suffer from operating systems support.

Additionally, the Java exception mechanism, which is a very
useful and powerful language feature, impedes performance signif-
icantly, since the generated code contains redundant checks for
violations. Considering the fact that the checks seldom result in
exceptions, it would be useful to be eliminated. JIT compilers apply
sophisticated optimizations which extract checks outside loops, or
generate speculative code, which assume that no exception will
happen and roll back in case it does [31].

Array violation checks occur frequently in DSP and multimedia
kernels, since they are abundant in array accesses and it is a really
limiting factor. Their elimination would be of vital importance.

In this paper, we present a translation based virtual machine
architecture running on an embedded RISC processor, we propose
some ISA extensions which accelerate the virtual machine execu-
tion and evaluate their impact on performance.

The translation optimizations that are applied are simple and
therefore fast. On the other hand, the use of optimized target
instructions (added as an ISA extension) results in quite efficient
code. Thus, the codesigned virtual machine performs fast, since
the generated code is kept efficient without applying sophisticated
optimizations, which increase the translation cost greatly.

The proposed ISA extension consists of two subsets. The first
subset contains instructions that diminish the overhead of security
checks, since they incorporate them in hardware. In particular,
there are special instructions for array handling that maintain the
array sizes in a small cache and check for out of bounds violations
in the execution stage. Furthermore, object accesses are accelerated
by hardware checks for null pointer exceptions. In case an excep-
tion occurs, which is not the usual case, a trap is caused which is
handled by a special handler in software. By eliminating the redun-
dant checks important performance gains can be obtained.

The second subset contains instructions that support the dis-
patch between successive translated blocks, which usually impedes
performance in translation based virtual machines. In such virtual
machines, the Java program counter is mapped to the real addresses
of the translated blocks using a software structure. A long search in
such a structure at every dispatch is very detrimental to perfor-
mance. To address this problem, we have included some special
branch instructions which use a small fully associative cache to

0141-9331/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2009.06.003

q This work was partially funded by the Greek Ministry of Development, Project
PENED03 ED-908.

* Corresponding author. Tel.: +30 2107723653.
E-mail address: isidoros@microlab.ntua.gr (I. Sideris).

Microprocessors and Microsystems 33 (2009) 415–429

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2009.06.003
mailto:isideris@gmail.com
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


map Java PCs to real addresses [19,21]. We have explored the per-
formance speedup for various sizes. For very large sizes the tech-
nique degenerates to translation chaining [30], a technique that
augments every translated block with direct branches to the two
possible successive translated blocks.

The extension of a typical RISC processor, instead of designing a
dedicated Java processor, has the great benefit of operating sys-
tems support maintenance, which is of paramount importance.
What is more, it does not incur great area increase.

In order to evaluate the performance impact of the proposed ISA
extensions, we have used the SimpleScalar toolset [10] and con-
ducted experiments using various processor configurations rang-
ing from a typical scalar RISC processor to a 4-way superscalar
out of order core. In a scalar RISC processor the extension results
in a speedup of 5.13x. The absolute performance reaches 4.51
ECM/MHz in that configuration, while in a 2-way out of order core
and a 4-way out of order core performance reaches 7.84 ECM/MHz
and 9.17 ECM/MHz respectively, something that shows that the
translation method generates code which can be parallelized
efficiently.

1.1. Outline

The rest of the paper is organized as follows. In Section 2 the
virtual machine framework used in this study is presented. In Sec-
tion 3 we present the proposed ISA extensions for array and object
accesses, while in Section 4 we introduce the special dispatch
instructions. Section 5 discusses some complemental hardware
support. Section 6 presents experimental results. Section 7 lists
some related work. Finally, Section 8 concludes the paper.

2. Virtual machine framework architecture

The execution of Java programs in the proposed system is based
on just-in-time translation of bytecode blocks. The host hardware
platform is an embedded RISC processor and the translation trans-
forms bytecode blocks into RISC instructions for efficient
execution.

2.1. Overview of dynamic translation

Interpreting bytecodes is slow. The JVM interpreter must fetch,
decode and execute each bytecode. Consider for example the byte-
code sequence of Fig. 1. The first instruction loads the local variable
y onto the stack, the second loads the constant 2, while the third
the local variable z. The imul instruction extracts the two topmost
values from the stack, and pushes their product to the stack. Sim-
ilarly, the iadd instruction adds the two values and pushes the re-
sult to the stack. The istore instruction stores the end result in
the variable x. The overhead of interpreting such a sequence is
obvious. A typical interpreter implementation consists of a loop
which fetches each bytecode and depending on its opcode value
dispatches to the implementation of the bytecode. Such an imple-

mentation is poor, since for each bytecode we execute lots of host
machine instructions. What is more, the branch in the interpreter
loop cannot be predicted efficiently by branch predictors.

To address this problem, just-in-time (JIT) translators have been
proposed [15], which dynamically translate bytecode sequences
into native code just before execution. Compared to traditional sta-
tic compilers, JIT compilers must perform translation at a much
faster rate. They cannot afford to spend much time for performing
optimizations, since the translation overhead should be optimized
in short time by faster code execution.

Generally, dynamic translators preserve an intermediate repre-
sentation of source blocks. However, the stack based nature of the
JVM instruction set constitutes a convenient representation, since
there are no register identifiers, but only an operand stack. Return-
ing to the example of Fig. 1, we can see that the data flow graph
extraction is straightforward. This simplicity has enabled even
hardware decoding of bytecode sequences for speeding up the
translation into native instructions [23].

2.2. Identifying dynamic blocks

One design decision that must be taken is that of selecting the
delimiters of the blocks, that is finding where to start and where
to end a source block of bytecodes. One convenient solution is to
start blocks at branch targets and end them in branch or call
instructions. Consider for example the control flow graph of
Fig. 2a. Each node is a basic block, that is a block with one entry
point, one exit point and no branch target contained in it. The
blocks we use may consist of many entry points. For example the
sequence DEG is one such block. The sequences FG and CG are
two other examples. Since some such blocks may have more than
one entry points, and we cannot branch in the middle of a trans-
lated block, we duplicate their basic blocks as shown in Fig. 2b.
The resulting blocks are superblocks with only one exit. Practically,
we perform translation for each block which starts from a not yet
encountered branch target and ends in the first branch instruction.

2.3. VM dispatch

The dispatch mechanism of the proposed virtual machine is
shown in Fig. 3. The emulation manager maintains a map table
which maps Java bytecode blocks addresses to addresses where
the corresponding translated blocks are kept. Whenever a branch
or call instruction is executed, the emulation manager checks if
there is a mapping in the table, and if so, it dispatches execution
to the corresponding translated block. Otherwise, it calls the trans-
lator in order for the bytecode block to be translated. After the
translation, the map table is updated and the newly translated
block is executed. The blocks always end in a control flow instruc-
tion. The emulation manager intervenes so as to dispatch execu-
tion between successive blocks.

2.4. Instruction folding

Besides the benefits of the stack based ISA in handling byte-
codes, it does cause serious performance degradation, since every
bytecode instruction depends on the other due to the stack.
Instruction folding algorithms have been proposed, which convert
bytecode sequences into RISC instructions, thus removing stack
accesses. Consider for example the bytecode sequence of Fig. 4a,
which consists of two iload instructions which load two local
variables onto the stack, the iadd instruction which performs an
operation and an istore instruction, which stores the end result
in one variable. By keeping the local variables in registers, we
can substitute these four bytecodes into one RISC instruction
which can be executed in just one cycle. This idea has been

x=y+(2*z)

iload y
iconst 2
iload z
imul
iadd
istore x

iload y

iconst 2 iload z

imul

iadd

istore x

Fig. 1. Bytecodes example.

416 I. Sideris et al. / Microprocessors and Microsystems 33 (2009) 415–429



Download	English	Version:

https://daneshyari.com/en/article/463162

Download	Persian	Version:

https://daneshyari.com/article/463162

Daneshyari.com

https://daneshyari.com/en/article/463162
https://daneshyari.com/article/463162
https://daneshyari.com/

