
Scalable register bypassing for FPGA-based processors

Nikolaos Kavvadias *, Spiridon Nikolaidis
Section of Electronics and Computers, Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

a r t i c l e i n f o

Article history:
Available online 29 July 2009

Keywords:
Microprocessors
Register bypassing
Field-programmable gate arrays
Embedded systems
Hardware description languages

a b s t r a c t

In this paper, a scalable scheme, configurable via register-transfer level parameters, for full register
bypassing in a modern embedded processor architecture, termed ByoRISC, is presented. The register
bypassing specification is parameterized regarding the number of homogeneous register file read and
write ports and the number of pipeline stages of the processor. The performance characteristics (cycle
time, chip area) of the proposed technique have been evaluated for FPGA target implementations of
the synthesizable ByoRISC model. It is proved that, a full bypassing network is a viable solution for the
elimination of data hazards when servicing instructions with multiple read and write operands. While
the maximum clock frequency is reduced by 17.9% in average, when using partial versus full forwarding,
the positive effect of custom computation eliminates this effect by providing cycle speedups of 3.9� to
5.5� and corresponding execution time speedups for a ByoRISC testbed processor of 3.6�. Individual
application speedups of up to 9.4� have also been obtained.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

A recent approach to embedded System-on-Chip design in-
volves the use of configurable and extensible processors [1–5],
usually in the form of synthesizable cores, offering architecture
customization possibilities. Configurability lies in tuning architec-
tural parameters, while extensibility of a processor usually refers
either to tightly-coupled modifications obtained by adding sin-
gle-, multi-cycle or pipelined versions of custom instructions or
to loosely-coupled accelerators not directly integrated within the
processor pipeline.

These architectural frameworks are regularly updated with
enhancements targeting at the improvement of diverse and often
conflicting requirements such as low power consumption, perfor-
mance for the general-purpose or specific application domains,
code size and overall system cost. During the development of such
processors and especially regarding non-legacy architectures, the
designers ought to consider the entire space of architectural solu-
tions regarding the instruction set and underlying microarchitec-
ture. However, it is often that designers limit themselves to
solutions that are empirically derived from past practices in order
to seemingly reduce complexity without negatively affecting per-
formance. An interesting example is the domination of the three-
address instructions limitation which is closely associated to a gen-
eral-purpose register file with a small number of read and write
ports, typically two and one, respectively. While a multi-port reg-
ister file could provide significant performance boost, it is regarded

as unnecessary complexity, dramatically degrading the timing
characteristics of the processor, especially if its implementation
is combined with data forwarding mechanisms across several pipe-
line stages.

In this work, we focus on the design and evaluation of data for-
warding (register bypassing) architectures, which is a technique
for eliminating data hazards in pipelined processors. The function
of the bypassing hardware is to resolve data hazards that arise
when an instruction needs the results of previous instructions in
the pipeline that have not been written to the register file by the
time the current instruction reads its source operands from the
register file. Generally, it is expected that extensive bypassing
comes with a significant impact on cycle time, area and power con-
sumption of the processor.

In this paper, a scalable and parameterized register bypassing
scheme is presented that can be utilized in current embedded pro-
cessors. The specification of the bypassing architecture can be con-
figured for the desired number of register file read/write ports and
pipeline stages of the processor in mind. The main contributions of
this paper can be summarized as follows:

� Development of a clear and concise register bypassing specifica-
tion that is fully parameterized and can be easily applied to dif-
ferent processors. Especially, it can be of particular interest to
developers of new/emerging processor architectures for provid-
ing more architectural options to their end users.

� The effect of the bypass circuitry on the timing and area of a rep-
resentative processor are carefully examined. Most previous
works only model either a partial processor or solely the bypass-
ing mechanisms.

0141-9331/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2009.07.002

* Corresponding author. Tel.: +30 2310 998079; fax: +30 2310 998018.
E-mail addresses: nkavv@physics.auth.gr (N. Kavvadias), snikolaid@physics.

auth.gr (S. Nikolaidis).

Microprocessors and Microsystems 33 (2009) 441–452

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro

http://dx.doi.org/10.1016/j.micpro.2009.07.002
mailto:nkavv@physics.auth.gr
mailto:snikolaid@physics. 
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


� Specific issues regarding targeting the bypass specification to
recent FPGA devices are highlighted. FPGAs have been neglected
as an implementation medium even in recent works on the
subject.

The rest of this paper is organized as follows. Related work is
summarized in Section 2. The processor pipeline model is briefed
in Section 3. Section 4 discusses the details of the scalable register
bypassing (SRB) specification, and in Section 5 its performance is
evaluated in terms of timing characteristics and area requirements
as well as in context of an image processing application set running
on an embedded RISC processor. Finally, Section 6 summarizes the
paper.

2. Related work

In related work, a number of approaches have been proposed
for the evaluation of register bypassing networks [6–10]. Most of
them deal with exploring the design space of partial bypassing
for an application set, representative of a particular domain, in or-
der to drive the customization and reduction of a full bypass net-
work. In the aforementioned works, neither a concise formalism
nor a reusable model of bypassing, applicable to FPGAs, is pre-
sented that can provide sufficient assistance to the processor de-
signer. Further, it is common that the bypass network is
evaluated for timing and area characteristics apart from the pro-
cessor, while a processor model taking account only the cycle
behavior of using the bypassing mechanisms is used separately
for obtaining execution cycles measurements.

In an early work in this field, Abnous and Bagherzadeh [6] ana-
lyzed partial bypassing between VLIW functional units in their 4-
integer-unit VIPER processor. They argued that complete bypassing
is too costly in VLIW processors even though significant perfor-
mance benefits can be achieved. The pipeline model of VIPER is
rather inflexible and cannot be used for exploration purposes: it
is restricted to four stages, deduced from the classic 5-stage pipe-
line of early RISCs by removing the memory access stage. In order
to achieve this, the processor model is limited to a single address-
ing mode (register indirect).

Further, in [7] the architecture of a detailed bypassing execution
unit model is described and applied for a multiple instruction issue
processor. Similar to [6] the processor model features a four-stage
pipeline, but in this case with configurable multiplicity of execu-
tion datapaths. A design space exploration approach for eliminat-
ing infrequently used routes in register bypass networks has
been presented in [8] applied to the case of a 5-issue custom VLIW
processor. In a similar architectural context, low power optimiza-
tions that exploit the forwarding paths of a fixed register bypass
network, for the purpose of minimizing power-costly accesses to/
from the register file have been also examined [10].

In [9] an operation table formalism was developed for capturing
the bypass mechanisms in pipelined embedded processors, along
with an automation tool (PBExplore) for exploring the design space,
constituted of the partial bypassing solutions, in terms of achiev-
able performance. The authors assume that full register bypassing
is not a viable solution, thus partial bypassing is preferred. How-
ever, the integration of the bypass networks within a synthesizable
description of their testbed architecture (Intel XScale) is not consid-
ered at all, even though this would be necessary in order to evaluate
the effect of the bypassing network on the processor cycle time and
aggregate area. Further, in their work, processor implementations
on FPGAs have not been considered at all.

A recent technique [11] on the design of register bypasses in-
volves a compiler-driven approach based on the fact that certain
register addresses are not actually read, given that the correspond-
ing operands are forwarded to the appropriate ports by the bypass

network. In this case, the processor instructions have to be stati-
cally rewritten to free the corresponding fields in order to derive
the appropriate control signals. Their architectural model is closer
to our approach, incorporating a multi-port register file and a con-
figurable number of pipeline stages. However, the main aim of this
technique is the energy consumption and area reduction of the
redundant bypasses for a VLIW ASIC processor model, and not
the thorough investigation of the practicality of full register
bypassing on FPGA-based soft processors.

An extensive design space exploration of clustered VLIW archi-
tectures, typically employing 2, 4 or 8 partitioned register files can
be found in [12]. The complexity of a full bypass network is re-
duced due to the smaller number of read and write ports of the
partitioned register files, with the tradeoff of introducing copy
operations among these. For the case of the unicluster architecture
which is also investigated as a reference, it is stated that its perfor-
mance is significantly lower to the clustered architecture. While
this is true, the exploration targets a standard cell VLSI process,
and performance on modern FPGA devices is not discussed.

A common denominator of some of these works [8,9] is the con-
sideration of compiler visibility of the partial bypasses. Here,
although partial bypassed networks are possible, we focus on pre-
senting a scalable specification for full register bypassing hardware
that is fully transparent to the programmer.

3. An abstracted view of the ByoRISC processor model

The architectural model targeted in this paper, shown in Fig. 1,
is the ByoRISC processor [13]. A ByoRISC processor can be extended
by application-specific hardware extensions (ASHEs) in the form of
either custom instruction units or locally-interfaced coprocessors.
Such ASHEs can implement multi-input multi-output (MIMO)
computations with local state that may have an arbitrary number
and combination of load/store accesses to the data memory. The
ByoRISC template employs a pipeline stage structure consisting of:

� an instruction fetch stage, IF (not shown in Fig. 1) of a possibly
wide instruction, incorporating one or more micro-operations
to be executed in their corresponding execution slots;

� a custom instruction operand address access stage and an
instruction decode stage where NRP register operands are read;

� NPIPE execution stages with at least one of them accessing the
data memory for full support of ByoRISC ASHEs;

� a register write-back stage for writing NWP register operands.

The basic assumption for the first execution stage is that it re-
ceives up to NRP read register operands from a multi-ported regis-
ter file and produces a result vector of up to NWP write register
operands. There is no limitation on the policy followed in the archi-
tecture for the incorporated functional units: the processor can
present a VLIW/EPIC architecture, servicing a number of indepen-
dent micro-operations in the same control step, or it can evaluate
MIMO (multiple-input multiple-output) instructions [14] that are
represented by data-dependence directed acyclic graphs of basic
block scope at the level of compiler intermediate language. The
subsequent execution stages accept the result vector from their
preceding stage, which is of width NWP � DW, where DW is the
register word width. Further, it can be specified that they read
up to NRP from the forwarded read operands, given that these have
been stored in the corresponding pipeline registers. The final pipe-
line stage is responsible for committing the final result vector to
the register file. Additional computations do not take place at this
stage, so reading the read register operand vector and the corre-
sponding register addresses (assumed through the figure) is not
necessary. Any of the NPIPE execution stages can be configured

442 N. Kavvadias, S. Nikolaidis / Microprocessors and Microsystems 33 (2009) 441–452



Download English Version:

https://daneshyari.com/en/article/463164

Download Persian Version:

https://daneshyari.com/article/463164

Daneshyari.com

https://daneshyari.com/en/article/463164
https://daneshyari.com/article/463164
https://daneshyari.com

