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a b s t r a c t

In recent years, a lot of iterative methods for finding multiple zeros of nonlinear equations
have been presented and analyzed. However, almost all these studies give no information
for the convergence radius of the corresponding method. In this paper, we give an estimate
of the convergence radius of the well-known modified Newton’s method for multiple zeros,
when the involved function satisfies a Hölder and center-Hölder continuity condition.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Finding the zeros of nonlinear equations is one of the most important problems in numerical analysis. In this study, we
use iterative methods to find a multiple zero xw of multiplicity m (m > 1), i.e., f(j)(xw) = 0, j = 0,1,. . . ,m � 1, and f(m)(xw) – 0, of
a nonlinear equation f(x) = 0, where f : D! R is a smooth function, and D is an open interval.

It is known that, the modified Newton method for multiple zeros is given by

xnþ1 ¼ xn �m
f ðxnÞ
f 0ðxnÞ

; ð1:1Þ

which converges quadratically [1].
There exists a cubically convergent method for multiple zeros, presented by Hansen and Patrick [2]:

xnþ1 ¼ xn �
f ðxnÞ

mþ1
2m f 0ðxnÞ � f ðxnÞf 00ðxnÞ

2f 0ðxnÞ

; ð1:2Þ

which is an extension of the classical Halley method of the third-order.
Another cubically convergent method for multiple zeros, is proposed by Traub [3]:

xnþ1 ¼ xn �
mð3�mÞ

2
f ðxnÞ
f 0ðxnÞ

�m2

2
f ðxnÞ2f 00ðxnÞ

f 0ðxnÞ3
; ð1:3Þ

which is an extension of the well-known Chebyshev method of the third-order.
In recent years, a lot of methods for multiple zeros have been presented, and many local convergence results have been

obtained, see [4–16] and references therein. In general, these results show that if the initial guess x0 of the corresponding

0096-3003/$ - see front matter � 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2010.05.098

* Corresponding author.
E-mail addresses: rhm65@126.com, rhm@mail.hzrtvu.edu.cn (H. Ren), iargyros@cameron.edu (I.K. Argyros).

Applied Mathematics and Computation 217 (2010) 612–621

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc



method is sufficiently close to the zero xw of the function involved, then the sequence {xn} generated by this method is well
defined, and converges to xw. But we don’t know how close to the zero xw the initial guess x0 should be. That is, these local
results give no information on the radius of the convergence ball for the corresponding method.

Here, we say an open ball U(xw,rw) # D with center xw and radius rw is called a convergence ball of an iterative method, if
the sequence generated by this iterative method starting from any initial values in it converges. Enlarging the convergence
ball of an iterative method is very important, because it shows the extent of difficulty we have to choose iterative initial
points. Of course, we will be delighted to have bigger radius for the convergence ball of an iterative method. However, this
depends on not only the iterative method we use but also on the conditions of the involved function, such as Lipschitz con-
tinuous conditions, Hölder continuous conditions, etc.

It is known that, in the case of a simple zero, many results on the estimate of the radius of the convergence ball have been
given for iterative methods, see [17–27]. Wang [17] and Traub [18] gave an exact estimate

rH ¼ 2
3K

; ð1:4Þ

on the radius of the convergence ball respectively for Newton’s method (m = 1 in (1.1)), when function f satisfies the Lipschitz
continuous condition:

jf 0ðxHÞ�1ðf 0ðxÞ � f 0ðyÞÞj 6 Kjx� yj; 8x; y 2 D; for some K > 0: ð1:5Þ

Argyros [20] provided the radius

rH ¼
1þ p

K þ ð1þ pÞK0

� �1
p

ð1:6Þ

for Newton’s method, when function f satisfies the Hölder continuous condition:

jf 0ðxHÞ�1ðf 0ðxÞ � f 0ðyÞÞj 6 Kjx� yjp; 8x; y 2 D; for some K > 0 ð1:7Þ

and the center-Hölder continuous condition:

jf 0ðxHÞ�1ðf 0ðxÞ � f 0ðxHÞÞj 6 K0jx� xHjp; 8x 2 D; for some K0 > 0; ð1:8Þ

where, 0 < p 6 1. Note that, when p = 1 and K = K0, the radius given by (1.6) reduces to that given by (1.4). Otherwise, since
K0 < K: rw < rw, and the upper bounds on the distance jxn � xwj(n P 0) are tighter. This development is very important in com-
putational mathematics, since a wider range of initial guesses x0 becomes available, and at most as few computations are
required to obtain a desired error tolerance. Note also that the radio K

K0
can be arbitrarily large [21]. Moreover, (1.8) is not

an additional hypothesis, since in practice the computation of constant K requires that of K0. Huang [22] generalized the Lips-
chitz continuous condition (1.5) of Newton’s method for another type of Hölder continuous condition. Local results were also
given in [23] using even more general conditions for Newton-like methods.

In this paper, we provide the radius

rH ¼
Qm

i¼1ðmþ pþ 1� iÞ
ðm� 1Þ!ðK þ ðmþ pÞK0Þ

� �1
p

ð1:9Þ

for the modified Newton’s method (1.1) in the case of multiple zeros, when function f satisfies the Hölder continuous
condition:

jf ðmÞðxHÞ�1ðf ðmÞðxÞ � f ðmÞðyÞÞj 6 Kjx� yjp; 8x; y 2 D; for some K > 0 ð1:10Þ

and the center-Hölder continuous condition:

jf ðmÞðxHÞ�1ðf ðmÞðxÞ � f ðmÞðxHÞÞj 6 K0jx� xHjp; 8x 2 D; for some K0 > 0; ð1:11Þ

where, 0 < p 6 1. Note that, conditions (1.10) and (1.11) are natural generalizations of conditions (1.7) and (1.8) from the case
of simple zero (m = 1) to multiple zero (m > 1), and the radius given by (1.9) reduces to the radius given by (1.6) when m = 1.
We also provide the error analysis, which matches the convergence order of the modified Newton’s method (1.1). The advan-
tages of our approach for m > 1 are the same as in the case when m = 1, which has been already explained above.

2. Preliminaries

We need the definitions of divided differences, and their properties.

Definition 2.1 [28]. The divided differences f[a0,a1, . . . ,ak], on k + 1 distinct points a0,a1, . . .,ak of a function f(x) are defined
by
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