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a b s t r a c t

The exact, explicit form of the transcendental solution of Chrystal’s equation, a first order
nonlinear ordinary differential equation (ODE) of degree two, is derived in terms of the
Lambert W-function. It is shown that this case of the general solution is dual-valued over
a finite interval and that, for a special case of the coefficients, its zeros involve the Golden
ratio. Additionally, a number of applications involving special cases of this ODE are noted
and the main properties of the Lambert W-function are briefly reviewed.
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The nonlinear ODE:

p2 þ Axpþ Byþ Cx2 ¼ 0; ð1Þ

where A, B, and C are constants and p :¼ d y/d x, has come to be known as Chrystal’s equation [1–3]. Special cases of Eq. (1)
arise in diverse fields of science and engineering; e.g., the design of parabolic reflectors used in optics and acoustics [4], the
study of poroacoustic traveling wave phenomena [5], and the modeling of plasma behavior in fusion physics [6].

The usual approach in treating Eq. (1) is to first solve for p, which yields1:

p ¼ 1
2
�Ax�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA2 � 4CÞx2 � 4By

q� �
; ð2Þ

and then make use of the transformation:

4By ¼ ðA2 � 4C � z2Þx2; ð3Þ
where B – 0 is henceforth assumed. If we further assume that x – 0 and z – a, b, then the transformed ODE is easily sepa-
rated and re-expressed as:

�zdz
ðz� aÞðz� bÞ ¼

dx
x
; ð4Þ

where:

a ¼ 1
2
ðQ � BÞ; b ¼ 1

2
ð�Q � BÞ and Q ¼ ð2Aþ BÞ2 � 16C: ð5Þ

Since the case a – b, which results in an algebraic solution, has already been examined by a number of other authors, in par-
ticular, Ince [1] and Davis [2], it will not be discussed here. Instead, the present Note is devoted to the case a = b, and the
transcendental solutions which stem from it.
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To this end, we set the discriminant Q = 0, i.e., we assume (2A + B)2 = 16C, from which it follows that a ¼ b ¼ � 1
2 B. Con-

sequently, Eq. (4) reduces to:

�zdz

z� 1
2 B

� �2 ¼
dx
x
; ð6Þ

which can be integrated to yield the implicit solution:

x z� 1
2

B
� �

exp
�B

2z� B

� �
¼ c; ð7Þ

where c – 0 is an otherwise arbitrary constant. With a little effort, Eq. (7) can be recast as:

� x
‘
¼ �B

2z� B

� �
exp

�B
2z� B

� �
; ð8Þ

where we have set ‘ = 2c/B for convenience. Solving now for z yields:

z ¼ �1
2

B 1þ 1
Wð�x=‘Þ

� �
; ð9Þ

where W(�) denotes the Lambert W-function (see Appendix A). Without loss of generality, we henceforth limit our attention
to the ‘+’ (i.e., upper) sign case and substitute Eq. (9) into Eq. (3), thus yielding:

y ¼ �1
4

x2 Aþ 1
2 Bþ B

2W0ðx=‘Þ
þ B

4W2
0ðx=‘Þ

h i
; x‘ > 0;

x2 Aþ 1
2 Bþ B

2Wrð�jx=‘jÞ þ
B

4W2
r ð�jx=‘jÞ

h i
; jxj 2 ð0; e�1j‘jÞ;

e�2‘2 Aþ 1
4 B

� �
; jxj ¼ e�1j‘j;

9= ; jxj > e�1j‘j;

8>><
>>: x‘ < 0;

8>>>>>><
>>>>>>:

ð10Þ

for each r 2 {�1,0}, where 9= denotes the fact that y is complex-valued for jxj > e�1j‘j (see Appendix A) and we have used the
fact that Q = 0 implies 4C ¼ 1

4 ð2Aþ BÞ2.
It is noteworthy that if x‘ < 0, but jxj 2 (0,e�1j‘j), then there are two distinct real values of y for every x, i.e., y is dual-val-

ued on this interval; see Appendix A. What is more, while not defined at x = 0, the limx?0y(x) does in fact exists (i.e., x = 0 is a
removable singularity of y(x)); specifically:

lim
x!0

yðxÞ ¼
y0; when the branch W0 is considered;
0; when the branch W�1 is considered;

	
ð11Þ

where y0 :¼ � 1
4 c2=B and we have made use of Eq. (A.2).

Observing that the phase space points (x,y,p) = (0,y0,p0), where p0 :¼ limðx;yÞ!ð0;y0Þp ¼ � 1
2 jcj (see Eq. (2)), and

(x,y,p) = (0,0,0) satisfy Eq. (1), and introducing the scaled variables X = x/‘ and Y = c�2By, we can construct the following
piecewise-defined expressions for the transcendental case of the general solution of Eq. (1):

Y0ðXÞ ¼ �
X2 K þ 1

2W0ðXÞ
þ 1

4W2
0ðXÞ

h i
; X 2 ½�e�1;0Þ [ ð0;1Þ;

1
4 ; X ¼ 0;

8<
: ð12Þ

Y�1ðXÞ ¼ �
X2 K þ 1

2W�1ðXÞ
þ 1

4W2
�1ðXÞ

h i
; X 2 ½�e�1; 0Þ;

0; X ¼ 0;

(
ð13Þ

where K = 1/2 + A/B, and we observe that:

Y0ð�e�1Þ ¼ Y�1ð�e�1Þ ¼ �e�2 K � 1
4

� �
: ð14Þ

It should be noted that the zero(s) of Y0 are exactly given by:

X0 ¼ �
1
2

e�1=2 ðK ¼ 0Þ; ð15Þ

X1;2 ¼ �
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4K
p

4K

 !
exp � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4K
p

4K

 !" #
ðK – 0Þ: ð16Þ

Also, it is of interest to note that X1,2 are real-valued only when K 6 1/4, where X1 = X2 = �e�1 when K = 1/4 (see Eq. (14)), and
that X1,2 are complex-valued, and Y0 is strictly negative, when K > 1/4.
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