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1. Introduction

Solving the nonlinear integral equations (IEs) by linearization method is a popular approach by many researches [1,2,4-
6], and the necessity of Volterra IEs was emphasized in Baker [3]. For the system of nonlinear integral equations, Glushkov
et al. [7] introduced the models of developing systems for describing a large class of problems in economics, ecology, med-
icine, and other fields of applied mathematics. Boikov and Tynda [4] developed Newton-Kantorovich method for solving the
system of nonlinear integral equations (named it two commodity models) as

x(t) — j;(r) h(l’, T)g(f)x(f)d‘[ =0

Jyo k(D1 = g(0)]x(t)dT = f(£),
where 0<t<t<T, y(t)<t with given the functions h(t,7),k(t,7) € Ciryolxitgoclf (£), &(E) € Cron) (0 < g(t) < 1) and the
unknown functions x(t) € Cp, ~,Y(t) € C and proved the existence, uniqueness and rate of convergence of the approx-

imate solution for Eq. (1.1).
In this work we further investigate the system of nonlinear integral equations of the form

(1.1)

[to,00]?

—[ h(t,7)x?(t)dt =0
f;mku )2 (T)dt = f(1),

where x(t) and y(t) are unknown functions defined on [to,o0), to> 0, and h(t, 7),k(t,T) € Cig sjxito.c]s S (£) € Citgo) ATE giveN
functions.

Stable computational scheme is given in detail in Section 2. The existence and uniqueness of the solution and rate of con-
vergence of the approximate solution are proved in Section 3. Discretization of the method is described in Section 4 and in
Section 5, numerical examples are given. Finally we end up the theoretical findings and experimental works with conclu-
sions in Section 6.

(1.2)

* Corresponding author at: Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, Malaysia.
E-mail addresses: ezaini@science.upm.edu.my (Z.K. Eshkuvatov), nmasri@math.upm.edu.my (N.M.A. Nik Long).

0096-3003/$ - see front matter Crown Copyright © 2010 Published by Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2010.09.068


http://dx.doi.org/10.1016/j.amc.2010.09.068
mailto:ezaini@science.upm.edu.my
http://dx.doi.org/10.1016/j.amc.2010.09.068
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

3718 Z.K. Eshkuvatov et al./Applied Mathematics and Computation 217 (2010) 3717-3725
2. Description of the method

To find the unknown functions x(t) and y(t) in Eq. (1.4), we introduce the notations
Py (x(£),y(t) = x(£) = [y, h(t, D)x*(t)dT =0,
Pa(x(t), y(8)) = F(£) = [y, k(t, D3 (T)dT =0, }
where 0 < to < t < T, then on the interval [y, T] the system of Eq. (1.4) can be reduced to the operator equation
PX) = (P1(X),P»(X)) = (0,0), (2.1)

where X denotes a vector function X = (x(t),y(t)). We solve (2.1) by the modified Newton-Kantorovich method, to do this end
we write the approximate equation

P'(Xo)(X — Xo) + P(Xo) =0, Xo = (Xo(£),¥o(t))- (2.2)
It is known that the derivative P'(Xy) of the nonlinear operator P(X) at the point X, is determined by the matrix:

%‘ Py
X l(x0.y0) O

1)/ X)) = (X0Yo)
Xo) =1 5, P,
9x 1(x0.Y0) ay

(X0-Yo)

Consequently Eq. (2.2) has the form

%}(XOJO)(AX(O) +% )(Ay(t)) =-P (Xo(t)’yo(t))7

, r (Xo-Yo (2.3)
g BXO) 52| (AY(D) = =Pa(Xo(0), Yo(0)),

(*0-Y0)

where Ax(t) =x;(t) — xo(t), Ay(t)=y:(t) — yo(t). With the given initial point Xq=(xo(t),yo(t)), we evaluate P(Xp) by the
definition

@ — lim Pl(X0+SX7yO)_P1(X07y0)
dx (X0.Yo) 50 S
t t
- liml Xo(t) + sx(t) 7/ h(t, T)[Xo(T) + sX(T)]*dT — Xo(t) +/ h(t,T)X%(‘L’)d‘C:|
s—0 S Yo(t) Yo(t)
t
=x(t) -2 h(t, )xo(T)x(1)dT,
Yo(t)
o(t)+sy(t) 2

dpP, o Pi(X0,Yo +5Y) — PiX0,Ye)  y Sy Rt DX5(T)dT ,
Ay 5 = lim - — h(eyo(0) 00O (0).

In a similar way, we obtain

dp, t
— =- k(t, T)xo(T)x(1)dT,
AX [, 55) Yolt) ‘
dp.
G|l = kYKo (O).
Y o30)

Therefore the system (2.3) becomes
t

Ax(t) -2 . h(t, )Xo (T)AX(T)dT + h(t, (£))X5 (o () Ay(£)
Yolt

= —Xxo(t) + h(t, 1)x3(t)d,
Yo(t)
t

-2 " k(t, T)%o(T)AX(T)dT + K(t, Yo (£))X5 (Vo (£)) AY(t)
Yo(t

=—f(t)+ /ytm k(t,7)x3(t)dr, (2.4)

Solving Eq. (2.4) for Ax(t) and Ay(t) gives (x4(t),y1(t)). By continuing this process, we obtain a sequence of approximate solu-
tions (Xm(t),ym(t)) found from the following system
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