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a b s t r a c t

The Newton–Kantorovich method is developed for solving the system of nonlinear integral
equations. The existence and uniqueness of the solution are proved, and the rate of conver-
gence of the approximate solution is established. Finally, numerical examples are provided
to show the validity and the efficiency of the method presented.
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1. Introduction

Solving the nonlinear integral equations (IEs) by linearization method is a popular approach by many researches [1,2,4–
6], and the necessity of Volterra IEs was emphasized in Baker [3]. For the system of nonlinear integral equations, Glushkov
et al. [7] introduced the models of developing systems for describing a large class of problems in economics, ecology, med-
icine, and other fields of applied mathematics. Boikov and Tynda [4] developed Newton–Kantorovich method for solving the
system of nonlinear integral equations (named it two commodity models) as

xðtÞ �
R t

yðtÞ hðt; sÞgðsÞxðsÞds ¼ 0;R t
yðtÞ kðt; sÞ½1� gðsÞ�xðsÞds ¼ f ðtÞ;

9=
; ð1:1Þ

where 0 < t0 6 t 6 T, y(t) < t with given the functions hðt; sÞ; kðt; sÞ 2 C½t0 ;1��½t0 ;1�f ðtÞ; gðtÞ 2 C½t0 ;1� ð0 < gðtÞ < 1Þ and the
unknown functions xðtÞ 2 C t0 ;1½ �; yðtÞ 2 C1

½t0 ;1�, and proved the existence, uniqueness and rate of convergence of the approx-
imate solution for Eq. (1.1).

In this work we further investigate the system of nonlinear integral equations of the form

xðtÞ �
R t

yðtÞ hðt; sÞx2ðsÞds ¼ 0;R t
yðtÞ kðt; sÞx2ðsÞds ¼ f ðtÞ;

9=
; ð1:2Þ

where x(t) and y(t) are unknown functions defined on [t0,1), t0 > 0, and hðt; sÞ; kðt; sÞ 2 C½t0 ;1��½t0 ;1�; f ðtÞ 2 C½t0 ;1� are given
functions.

Stable computational scheme is given in detail in Section 2. The existence and uniqueness of the solution and rate of con-
vergence of the approximate solution are proved in Section 3. Discretization of the method is described in Section 4 and in
Section 5, numerical examples are given. Finally we end up the theoretical findings and experimental works with conclu-
sions in Section 6.

0096-3003/$ - see front matter Crown Copyright � 2010 Published by Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2010.09.068

⇑ Corresponding author at: Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM, Malaysia.
E-mail addresses: ezaini@science.upm.edu.my (Z.K. Eshkuvatov), nmasri@math.upm.edu.my (N.M.A. Nik Long).

Applied Mathematics and Computation 217 (2010) 3717–3725

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate/amc

http://dx.doi.org/10.1016/j.amc.2010.09.068
mailto:ezaini@science.upm.edu.my
http://dx.doi.org/10.1016/j.amc.2010.09.068
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


2. Description of the method

To find the unknown functions x(t) and y(t) in Eq. (1.4), we introduce the notations

P1ðxðtÞ; yðtÞÞ ¼ xðtÞ �
R t

yðtÞ hðt; sÞx2ðsÞds ¼ 0;

P2ðxðtÞ; yðtÞÞ ¼ f ðtÞ �
R t

yðtÞ kðt; sÞx2ðsÞds ¼ 0;

9=
;

where 0 < t0 6 t 6 T, then on the interval [t0,T] the system of Eq. (1.4) can be reduced to the operator equation

PðXÞ ¼ ðP1ðXÞ; P2ðXÞÞ ¼ ð0;0Þ; ð2:1Þ

where X denotes a vector function X = (x(t),y(t)). We solve (2.1) by the modified Newton–Kantorovich method, to do this end
we write the approximate equation

P0ðX0ÞðX � X0Þ þ PðX0Þ ¼ 0; X0 ¼ ðx0ðtÞ; y0ðtÞÞ: ð2:2Þ

It is known that the derivative P0(X0) of the nonlinear operator P(X) at the point X0 is determined by the matrix:

P0ðX0Þ ¼
@P1
@x

��
ðx0 ;y0Þ

@P1
@y

���
ðx0 ;y0Þ

@P2
@x

��
ðx0 ;y0Þ

@P2
@y

���
ðx0 ;y0Þ

0
B@

1
CA:

Consequently Eq. (2.2) has the form

@P1
@x

��
ðx0 ;y0Þ

ðDxðtÞÞ þ @P1
@y

���
ðx0 ;y0Þ

ðDyðtÞÞ ¼ �P1ðx0ðtÞ; y0ðtÞÞ;

@P2
@x

��
ðx0 ;y0Þ

ðDxðtÞÞ þ @P2
@y

���
ðx0 ;y0Þ

ðDyðtÞÞ ¼ �P2ðx0ðtÞ; y0ðtÞÞ;

9>=
>; ð2:3Þ

where Dx(t) = x1(t) � x0(t), Dy(t) = y1(t) � y0(t). With the given initial point X0 = (x0(t),y0(t)), we evaluate P0(X0) by the
definition

dP1

dx

����
ðx0 ;y0Þ

¼ lim
s!0

P1ðx0 þ sx; y0Þ � P1ðx0; y0Þ
s

¼ lim
s!0

1
s

x0ðtÞ þ sxðtÞ �
Z t

y0ðtÞ
hðt; sÞ½x0ðsÞ þ sxðsÞ�2ds� x0ðtÞ þ

Z t

y0ðtÞ
hðt; sÞx2

0ðsÞds
" #

¼ xðtÞ � 2
Z t

y0ðtÞ
hðt; sÞx0ðsÞxðsÞds;

dP1

dy

����
ðx0 ;y0Þ

¼ lim
s!0

P1ðx0; y0 þ syÞ � P1ðx0; y0Þ
s

¼ lim
s!0

R y0ðtÞþsyðtÞ
y0ðtÞ

hðt; sÞx2
0ðsÞds

s
¼ hðt; y0ðtÞÞx2

0ðy0ðtÞÞyðtÞ:

In a similar way, we obtain

dP2

dx

����
ðx0 ;y0Þ

¼ �2
Z t

y0ðtÞ
kðt; sÞx0ðsÞxðsÞds;

dP2

dy

����
ðx0 ;y0Þ

¼ kðt; y0ðtÞÞx2
0ðy0ðtÞÞyðtÞ:

Therefore the system (2.3) becomes

DxðtÞ � 2
Z t

y0ðtÞ
hðt; sÞx0ðsÞDxðsÞdsþ hðt; y0ðtÞÞx2

0ðy0ðtÞÞDyðtÞ

¼ �x0ðtÞ þ
Z t

y0ðtÞ
hðt; sÞx2

0ðsÞds;

� 2
Z t

y0ðtÞ
kðt; sÞx0ðsÞDxðsÞdsþ kðt; y0ðtÞÞx2

0ðy0ðtÞÞDyðtÞ

¼ �f ðtÞ þ
Z t

y0ðtÞ
kðt; sÞx2

0ðsÞds; ð2:4Þ

Solving Eq. (2.4) for Dx(t) and Dy(t) gives (x1(t),y1(t)). By continuing this process, we obtain a sequence of approximate solu-
tions (xm(t),ym(t)) found from the following system
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