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a b s t r a c t

By using the method of planar dynamical systems to an integrable nonlinear wave equa-
tion, the existence of periodic travelling wave, solitary wave and kink wave solutions is
proved in the different parametric conditions. The phase portraits of the travelling wave
system are given. It can be shown that the existence of singular curves in the travelling
wave system is the reason why the travelling wave solutions lose their smoothness. More-
over, the so-called W/M-shaped solitary wave solutions are obtained.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following integrable nonlinear wave equation

ðuþ auxxÞt ¼ bux þ
1
2
½ðu2 þ au2

x Þðuþ auxxÞ�x; ð1:1Þ

where a ¼ �1; b is a constant. It is obtained through a reshuffling procedure of the Hamiltonian operators underlying the
bi-Hamiltonian structure of KdV and mKdV equations [2,3]. In [3], Rosenau has studied the nonanalytic solitary waves of
Eq. (1.1) and pointed out the interaction of nonlinear dispersion with nonlinear convection generates exactly compact struc-
tures. In this paper, we consider bifurcation problem of solitary waves, kink (or anti-kink) waves and periodic waves of Eq.
(1.1) by using the bifurcation theory of planar dynamical systems.

We look for travelling wave solutions of Eq. (1.1) in the form of

uðx; tÞ ¼ /ðx� ctÞ ¼ /ðnÞ; ð1:2Þ

where c is the wave speed. The travelling variable (1.2) permits us reducing Eq. (1.1) to an ODE for /ðnÞ

�cð/þ a/00Þ0 ¼ b/0 þ 1
2
½ð/2 þ a/0

2Þð/þ a/00Þ�0; ð1:3Þ

where /0 is the derivative with respect to n. Integrating Eq. (1.3) once, we have

�cð/þ a/00Þ ¼ b/þ 1
2
ð/2 þ a/0

2Þð/þ a/00Þ þ d; ð1:4Þ

where d is an integral constant.
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Obviously, Eq. (1.4) is equivalent to the following two-dimensional system

d/
dn
¼ y;

dy
dn
¼ �2dþ 2ðbþ cÞ/þ /3 þ a/y2

að/2 þ ay2 þ 2cÞ
; ð1:5Þ

which has the first integral

Hð/; yÞ ¼ a
2

/2y2 þ 2d/þ ðbþ cÞ/2 þ 1
4

/4 þ 1
4

y4 þ cy2 ¼ h: ð1:6Þ

System (1.5) is a planar dynamical system depending on its parameters. Because the phase orbits defined by the vector
field of this system determine all its travelling wave solutions, we will investigate bifurcations of the phase portraits of the
system (1.5), as some parameters are varied in phase plane ð/; yÞ. Here, we should point out that we are considering physical
model where only bounded travelling waves are meaningful. Hence, we are only concerned with bounded solutions of Eq.
(1.1).

Suppose that uðx; tÞ ¼ /ðx� ctÞ ¼ /ðnÞ is a continuous solution of Eq. (1.1) for n 2 ð�1;1Þ and limn!þ1/ðnÞ
¼ a; limn!�1/ðnÞ ¼ b. Usually, we have such results: (i) /ðx; tÞ is a solitary wave solution if a ¼ b; (ii) /ðx; tÞ is a kink or
anti-kink solution if a – b. According to above analysis, it can be concluded that a solitary wave solution of Eq. (1.1) corre-
sponds to a homoclinic orbit of system (1.5), a kink (or anti-kink) wave solution Eq. (1.1) corresponds to a heteroclinic orbit
(or the so-called connecting orbit) of system (1.5). Similarly, a periodic orbit of system (1.5) corresponds to a periodically
travelling wave solution of Eq. (1.1). Thus, to investigate all possible bifurcations of solitary waves, kink wave and periodic
waves of Eq. (1.1), we need to find all homoclinic orbits, heteroclinic orbit and periodic annuli of system (1.5), which depend
on the system parameters. The bifurcation theory of dynamical systems [1,4,5] plays an important role in our study.

We noticed that right-hand side of the second equation of system (1.5) has a factor ð/2 þ ay2 þ 2cÞ�1, so there exist sin-
gular curves /2 þ y2 þ 2c ¼ 0 for a ¼ 1; c < 0 and /2 � y2 þ 2c ¼ 0 for a ¼ �1, respectively. On the two singular curves,
yn ¼ /nn becomes unbounded or undefined. It implies that a smooth system (1.1) may has non-smooth travelling wave solu-
tions. The occurrence of breaking for wave solutions of Eq. (1.1) (i.e. the phenomenon that a wave remains bounded, but its
slope becomes unbounded in a finite time) has been studied before, in for instance [5,6], It has been pointed out that trav-
elling waves sometimes lose their smoothness during the propagation due to the existence of such singular curves within the
solution surfaces of the wave equation.

The paper is organized as follows. In Section 2, we discuss bifurcations of phase portraits of (1.5). In Section 3, we consider
the existence of travelling wave solutions of Eq. (1.1). In Section 4, we study the M/W-shaped solitary wave solutions of Eq.
(1.1). A short conclusion is given in Section 5.

2. Bifurcations of phase portraits of system (1.5)

In this section, we study all bifurcations of phase portrait in the parametric space. Denote dn ¼ að/2 þ ay2 þ 2cÞdf, then
system (1.5) has the same topological phase portraits as the following polynomial system

d/
df
¼ að/2 þ ay2 þ 2cÞy; dy

df
¼ �ð2dþ 2ðbþ cÞ/þ /3 þ a/y2Þ; ð2:1Þ

except for the singular curves /2 þ ay2 þ 2c ¼ 0. Easy to see that system (2.1) is a Hamiltonian system with Hamiltonian
Hð/; yÞ defined as the same as (1.6). For a given h ¼ Hð/; yÞ, (1.6) determine a set of invariant curves of system (2.1), which
contain some different branches of curves. As h is varied, (1.6) defined different families of orbits of system (2.1) with dif-
ferent dynamical behaviors.

Denote that

Fð/Þ ¼ /3 þ 2ðbþ cÞ/þ 2d: ð2:2Þ

It is easy to know that on the ð/; yÞ-phase plane, the abscissas of equilibrium points of system (2.1) on the /-axis are the

zeros of Fð/Þ. Note that F 0ð/Þ ¼ 3/2 þ 2ðbþ cÞ; F 0ð/Þ has two zeros /�� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2ðbþcÞ

3

q
if bþ c < 0. Obviously,

Fð/��Þ ¼ 2d� 4ðbþ cÞ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðbþ cÞ

3

r
: ð2:3Þ

According to (2.3), we can obtain the following bifurcation curves on the ðb; dÞ-parameter plane for fixed c (see Fig. 1)

L : d ¼ � �2ðbþ cÞ
3

� �3
2

: ð2:4Þ

Throughout we assume that d P 0. Otherwise, we can make a transformation to reduce (1.5) to this case, so we consider only
the upper half plane of ðb; dÞ-parametric plane. The bifurcation curves L divides the ðb; dÞ-parametric plane into two
subregions:

612 A. Chen et al. / Applied Mathematics and Computation 216 (2010) 611–622



Download English Version:

https://daneshyari.com/en/article/4631872

Download Persian Version:

https://daneshyari.com/article/4631872

Daneshyari.com

https://daneshyari.com/en/article/4631872
https://daneshyari.com/article/4631872
https://daneshyari.com

