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a b s t r a c t

We extend the algorithm for computing {1}, {1,3}, {1,4} inverses and their gradients from
[11] to the set of multiple-variable rational and polynomial matrices. An improvement of
this extension, appropriate to sparse polynomial matrices with relatively small number
of nonzero coefficient matrices as well as in the case when the nonzero coefficient matrices
are sparse, is introduced. For that purpose, we exploit two effective structures form [6],
which make use of only nonzero addends in polynomial matrices, and define their partial
derivatives. Symbolic computational package MATHEMATICA is used in the implementa-
tion. Several randomly generated test matrices are tested and the CPU times required by
two used effective structures are compared and discussed.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

The following Penrose equations are crucial in pseudoinverses definition:

ð1Þ AXA ¼ A; ð2Þ XAX ¼ X; ð3Þ ðAXÞT ¼ AX; ð4Þ ðXAÞT ¼ XA:

For a subset � of the elements from the set {1,2,3,4}, the set of matrices obeying the equations determined by the set � is
denoted by Afzg. A matrix from Afzg is called an �-inverse of A and it is denoted by A�. The Moore–Penrose inverse is the
unique matrix satisfying all the Eqs. (1)–(4), and it is denoted by A�.

A lot of methods were proposed to compute various generalized inverses of a matrix. These include methods arising from
the Cayley–Hamilton theorem, the full-rank factorization and the singular value decomposition (see for instance, [1,15]).
Greville in [2] proposed a finite recursive algorithm for determining the Moore–Penrose inverse. Due to its ability to
undertake sequential computing, this method has been extensively applied in statistical inference, filtering theory, linear
estimation theory, optimization and also in analytical dynamics [4]. About a decade ago, Udwadia and Kalaba gave an alter-
native and a simple constructive proof of Greville’s formula [12]. A generalization of Greville’s method to the weighted
Moore–Penrose inverse is introduced in [14]. The results in [14] are established by using a new technique.

Symbolic computation of generalized inverses and their gradients is one of the most interesting areas of computer alge-
bra. Matrix differentiation is of considerable importance in statistics. It is especially useful in connection with the maximum
likelihood estimation of the parameters in a statistical model. The maximum likelihood estimates of the model’s parameters
satisfy the equations (known as the likelihood equations) obtained by equating to zero the first-order partial derivatives
(with respect to model’s parameters) of the logarithm of the so-called likelihood function [3]. In many important cases,
the likelihood function involves the determinant and/or inverse of a matrix. The gradient of the pseudo-inverse may be
needed for sensitivity analysis, optimizations or in the nonlinear least squares problems.
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There is a lot of extensions of the partitioning method to sets of rational and polynomial matrices. The algorithm for the compu-
tation of the Moore–Penrose inverse of the one-variable polynomial and/or rational matrix, based on the Greville’s partitioning algo-
rithm, was introduced in [8]. The extension of results from [8] to the set of the two-variable rational and polynomial matrices is
introduced in the paper [7]. The Wang’s partitioning method from [14], aimed in the computation of the weighted Moore–Penrose
inverse, is extended to sets of one-variable rational and polynomial matrices in the paper [9]. Also the efficient algorithm for com-
puting the weighted Moore–Penrose inverse, appropriate for the polynomial matrices where only a few polynomial coefficients are
nonzero, is established in [6]. Udwadia and Kalaba derived in [13] a constructive procedure for determining different types of general-
ized inverses for constant matrices. These results are extended to one-variable rational and polynomial matrices in [10].

An efficient method for direct simultaneous computation of the Moore–Penrose inverse in conjunction with its gradient is
derived in [5]. Layton in [5] used the approach to simply differentiate terms arising from the Grevile’s partitioning method.
The resulting algorithm in [5] is usable and efficient because of its unique property that it requires only elementary matrix
operations, such as addition, subtraction and multiplication. In the paper [11] the Layton’s method is combined with the rep-
resentation of the Moore–Penrose inverse of one-variable polynomial matrix from [8]. In consequence, the algorithm for
computing the gradient of the Moore–Penrose inverse for one-variable polynomial matrix is developed. Moreover, using
the representation of various types of pseudo-inverses from [10], more general algorithms for computing partial derivatives
of {1}, {1,3} and {1,4} inverses of one-variable rational and polynomial matrices are derived in [11].

As usual, let R be the set of real numbers, Rm�n be the set of complex m � n matrices, and Rm�n
r ¼ fX 2 Rm�njrankðXÞ ¼ rg.

Let A 2 Rðs1; s2; . . . ; spÞm�n be arbitrary multi-variable rational or polynomial matrix. In order to make a notation shorter we
denote S = (s1,s2, . . . ,sp) and write A(S) instead of A(s1,s2, . . . ,sp). Let Ai(S) be the submatrix of A(S) consisting of first i columns
of A(S). If ith column of A(S) is denoted by ai(S), then it is obvious that Ai(S) is partitioned as Ai(S) = [Ai�1(S)jai(S)], i = 2, . . . ,n,
assuming A1(S) = [a1(S)]. The set of polynomials (resp. rational functions) with complex coefficients in the variables S are de-
noted by R½S� (resp. RðSÞ). The set of m � n matrices with elements in R½S� (resp. RðSÞ) are denoted by R½S�m�n (resp RðSÞm�n).
Also by O, we denote an appropriate zero matrix and by 0, appropriate zero vector.

Main results of the present article are summarized in the following.

– Algorithms from [10], which give recursive rules for computation of Azi ðsÞ in terms of Azi�1ðsÞ; s 2 R, are extended from the
single-variable polynomial matrix case to the multi-variable polynomial matrix case.

– Algorithm which gives recurrent relations between the partial derivatives
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, established in [11], is improved

in the case when a great number of coefficient matrices vanishes to zero matrix as well as in the case when the nonzero
coefficient matrices are sparse. In order to define effective algorithm for computing partial derivatives of generalized
inverses, it is necessary to define partial derivatives of effective structures defined in the papers [6,7].

Generally, the present paper is a continuation of the papers [6,7,9–11] on multi-variable polynomial matrices and sparse matrices.
Extension of results from [10,11] to multi-variable polynomial matrices is presented in the second section. In this way, a

finite recursive algorithm for symbolic computation of generalized inverses Azi ðSÞ and their gradients is derived. Algorithms
effectively applicable to sparse polynomial matrices are developed in the third section. Implementation, evaluated in the
package MATHEMATICA, is exploited in development of several illustrative examples in the last section. A comparison of
two used effective structures is given.

2. Multi-variable polynomial matrix case

Udwadia and Kalaba [13] proved the following theorem which gives the expressions for compute generalized inverses of
partitioned matrix Ak = [Ak�1jak] where Ak�1 2 Rm�k; ak 2 Rm�1 and k 2 {2,3, . . . ,n}.

Theorem 2.1 [13]. Denote by � any of following generalized inverses: {1}, {1,3}, {1,4} or {1,2,3,4}. Also let ck ¼ ðI � AkAzkÞak and
dk ¼ Azkak. Then

Azk ¼
Azk�1 � dkbT

k

bT
k

" #

where bk is given by:

1. If ck = 0 then

bk ¼
ðAzk�1Þ

T dk

1þ dT
k dk

; z ¼ f1;2;3;4g or z ¼ f1;4g

and bk is an arbitrary vector from Rm�1 if � = {1,3} or {1}.
2. Otherwise, if ck – 0 then

bk ¼
cT

kðI � Ak�1Azk�1Þ
cT

k ck
; z ¼ f1;4g or z ¼ f1g
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