
Graph based test case generation for TLM functional verification

Mohammad Reza Kakoee *, M.H. Neishaburi, Siamak Mohammadi
Nanoelectronics Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Iran

a r t i c l e i n f o

Available online 10 April 2008

Keywords:
TLM
Functional test case generation
SystemC
Verification
Coverage metrics

a b s t r a c t

Describing complex systems at a high level of abstraction provides designers with the possibility of
exploring multiple SoC design architectures before committing to the low level-details of a complete
implementation. Transaction level modeling understandably expedites the design simulation and verifi-
cation. During the verification process, generating good test cases plays a significant role in determining
the quality of the design. Inadequate test cases may cause bugs to remain. In this paper, first, in order to
generate test cases for a TL model, we present a Control-Transaction Graph (CTG) which describes the
behavior of a TL Model. A Control Graph is a control flow graph of a module in the design and transactions
represent the interactions such as synchronization between modules. Second, we define dependent paths
(DePaths) on the CTG as test cases for a transaction level model, which can find communication errors in
simulation. We also give coverage metrics for a TL model to measure the quality of the generated test
cases. Finally, we apply our method on the SystemC model of AMBA–AHB bus and JPEG encoder and gen-
erate test cases based on the CTG of these models.

Crown Copyright � 2008 Published by Elsevier B.V. All rights reserved.

1. Introduction

Conventional RTL simulation is no longer fast enough for verifi-
cation of today’s complex system-on-a-chip (SoC) designs. Com-
prehensive verification of such sophisticated designs needs not
only verification of the hardware implementation, but also verifi-
cation of the embedded software. To achieve the necessary simula-
tion performance, we must move to a higher, more abstract level of
modeling. Transaction level modeling (TLM) [2,8] in SystemC [1]
achieves 100x improvements in the simulation speed and enables
architectural analysis and hardware/software co-verification.

Highly dependable construction of system level designs and
proving their correctness are particularly important and arduous.
Simulation is a practical and attractive method to achieve this goal.
Although TLM expedites the verification of a hardware design
[10,11,15], the problem of having high coverage test cases remains
unsettled at this level of abstraction.

Admittedly, testbench development for SoC designs [7] requires
even more effort than the design itself. The complexity of the
code requires the use of a sophisticated software development
environment.

To prove the correctness of a design by simulation, we must uti-
lize all cases in the design input domain exhaustively. However, as
this is not practical, we rather execute a test target program with
test-data which are elements selected from a subset, according to

some conditions on the input domain. These conditions are called
test cases. Test cases play an important role in determining the
quality of a design. They must be written carefully and if their
number is not adequate, it is likely that some bugs will remain
undetected in the design. In addition, test case overlaps would in-
crease the verification cost.

To perform the verification in a minimum period of time, we
need some metrics to detail the conditions. These metrics are
called coverage metrics. At the evaluation step, by examining the
coverage, we can determine how much of the design has been
verified. By clearly setting up the coverage metrics before we start
verifying a design, we can generate test cases that will satisfy these
metrics.

1.1. Previous works and motivation

Taylor and Kelly proposed the concept of structural testing of
concurrent programs [3] in software domain. They defined the con-
current state graph as a model of a concurrent program in soft-
ware. Some EDA tools such as Specman elite [9] of Cadence
provide test generation with assertion coverage. They offer a user
defined constrained random simulation for RTL designs. Jindal
and Jain in [5] describe a methodology for verification of TL models
by using RTL Testbenches. Habibi et al. in [4] and [12] proposed a
method based on FSM generation for TLM verification. However,
they did not offer a methodology for generating test cases for it.
Bombieri et al. [6] proposed a technique for reusing TLM
testbenches at RT level with respect to both fault coverage and
assertion coverage. Nevertheless, they used already written TLM

0141-9331/$ - see front matter Crown Copyright � 2008 Published by Elsevier B.V. All rights reserved.
doi:10.1016/j.micpro.2008.03.010

* Corresponding author.
E-mail addresses: kakoee@ieee.org (M.R. Kakoee), mhnisha@cad.ece.ut.ac.ir

(M.H. Neishaburi), smohamadi@ut.ac.ir (S. Mohammadi).

Microprocessors and Microsystems 32 (2008) 288–295

Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/ locate /micpro

mailto:kakoee@ieee.org
mailto:mhnisha@cad.ece.ut.ac.ir
mailto:smohamadi@ut.ac.ir
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro


testbenches and did not explain how these testbenches are ob-
tained. To the best of our knowledge, our previous work [15] is
the first in generating test cases for functional verification of TL
models. However, in that work we assumed that the TL model does
not have any wait statement or synchronization statement. In this
paper, we extend our graph to cover these kinds of statements
and apply our method to a second case study.

The motivation behind this work is to investigate some tech-
niques to provide high-quality test cases for the verification of an
SoC in TLM domain. To show that these test cases are satisfactory,
we define some coverage metrics. We introduce the Control-Trans-
action Graph (CTG) which is a directed graph to generate the
appropriate test cases and coverage metrics.

1.2. Contribution

In this paper we propose a technique for generating test cases,
which satisfies some defined coverage metrics, based on the Sys-
temC code. We use the Control-Transaction Graph (CTG) as a mod-
el for Transaction Level designs. The CTG describes design modules
as Control Graphs and Transactions between modules. We gener-
ate test cases based on the CTG. Some coverage metrics are defined
based on this graph (i.e. CTG) to check the quality of test cases and
to control the verification flow.

The rest of this paper is organized as follows: the next section
represents the Control-Transaction Graph (CTG) as a model for
transaction level designs. Section 3 describes our technique for
generating test cases by using CTG. Section 4 defines coverage met-
rics for Transaction Level Models. Section 5 describes the algo-
rithms which generate test cases on the CTG. Section 6 gives an
outline of our test case generation tool. In Section 7 we apply our
method on two real SystemC models as case studies. Finally, the
last Section concludes the paper.

2. Representing a TL model by CTG

In this section we introduce the CTG describing the behavior of
a transaction level model. A CTG includes two parts: Control
Graphs and Transactions. Each Control Graph represents a module
independently and transactions show the relations between
modules.

2.1. Control Graph

A TL model consists of concurrent modules which communicate
with one another. A Control graph (CG) represents the abstract
control flow of a module in a TL model. Because each module is re-
garded as a sequential process, we can deduce a control flow graph
from the source code. Each Node in the control graph denotes
either a transaction statement or a flow control statement which
includes transaction statements. Other statements such as assign-
ment statements that contain no transaction statement are ignored
in making the Control Graph. Edges in the Control Graph express
control transfer between nodes.

Transaction statements characterize the concurrent behavior of
a transaction level model. For example, in a SystemC TLM, transac-
tion statements are such statements as ‘‘put” and ‘‘get” methods of
sc_interface.

Since the nodes in the CG are just flow control statements or
transaction statements, the number of nodes (jNj) in the control
graph is much less than the number of statements in the code;
therefore, the process of generating this graph from the code is
not much time consuming. The formal semantic of a Control Graph
is as follows:

CG � fN; E; s; fg;

where N is a set of nodes and E is a set of edges in CG. If e = (u, v) 2 E
then u, v 2 N. The start and final nodes are s and f, respectively.
Since a TL model has multiple modules, it has multiple Control
Graphs. We express a tuple of Control Graphs corresponding to a
TL model T as CGs(T):

CGs(T) � {CGi = (Ni, Ei, si, fi)—1 6 i 6 num(T)}, where num(T) de-
notes the number of modules in T.

2.2. Transactions in the CTG

Transactions in CTG represent the concurrent communications
between any two modules and consequently any two CGs in a TL
model.

Definition 1. Given modules Mx and My communicating with each
other and control graphs CGx and CGy representing these modules,
respectively. A set Syncs is defined as follows:

SyncsðCGx;CGyÞ ¼ fsync ¼ ða; b; IÞja 2 Nx; b 2 Nyg;

where triplet (a, b, I) represents a simultaneous execution between
two nodes a 2 Nx and b 2 Ny with an identifier I.

Similarly we define two sets Comms and Waits as follows:

CommsðCGx;CGyÞ ¼ fcom ¼ ða; b; JÞja 2 Nx; b 2 Nyg;

where (a, b, J) represents communication from a to b with an iden-
tifier J.

WaitsðCGx;CGyÞ ¼ fWait ¼ ða; b;KÞja 2 Nx; b 2 Nyg;

where (a, b, k) represents the possibility of a waiting for b with an
identifier K. ‘‘Wait” has two states: for waiting and for not waiting.

Definition 2. Consider the definitions of Syncs, Comms and Waits
as sets of all triplets of simultaneous executions, communications
and waits, respectively in a TL model as follows:

0

1

2

3

4

9

5 7

6 8

10

0

1

2

3

4

5

6

7

11 8

Module 1 Module 2

Fig. 1. Graphical form of a CTG sample.

M.R. Kakoee et al. / Microprocessors and Microsystems 32 (2008) 288–295 289



Download English Version:

https://daneshyari.com/en/article/463199

Download Persian Version:

https://daneshyari.com/article/463199

Daneshyari.com

https://daneshyari.com/en/article/463199
https://daneshyari.com/article/463199
https://daneshyari.com

