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a b s t r a c t

Based on an independent variable transformation, the Kð3;2Þ equation is investigated by
the bifurcation method of planar systems and qualitative theory of polynomial differential
system. In different regions of the parametric space, some new exact explicit peakon and
smooth periodic wave solutions are obtained. The results presented in this paper improve
the previous results.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

To study the role of nonlinear dispersion in the formation of patterns in the liquid drop, Rosenau and Hyman [1] showed
that in a particular generalization of the KdV equation:

ut þ ðumÞx þ ðunÞxxx ¼ 0; m > 0; 1 < n 6 3; ð1Þ

which is called Kðm;nÞ equation. They obtained solitary wave solutions with compact support in it, which they called
compactons. For the case m ¼ n (m is an integer), these compactons had the property that the width was independent
of the amplitude. In Ref. [1], Rosenau and Hyman studied Kð2;2Þ and Kð3;3Þ equations further and they stated that
Kð3;2Þ equation had an elliptic function solution. In a later work, Rosenau [2] obtained elliptic function compactons
for the cases of Kð4;2Þ and Kð5;3Þ. Phase compactons have also been investigated [3]. Rosenau [4] also studied the
Kðm;nÞ equation:

ut þ aðumÞx þ ðunÞxxx ¼ 0; ð2Þ

where a is a constant. He investigated nonlinear dispersion and compact structures [5], nonanalytic solitary waves [6], and
a class of nonlinear dispersive–dissipative interactions [7]. Lately, Ismail and Taha [8] implemented a finite difference
method and a finite element method to study the two types of equations Kð2;2Þ and Kð3;3Þ. A single compacton as well
as the interaction of compactons has been numerically studied. Then, Ismail [9] made an extension to the work in [8] and
applied a finite difference method on Kð2;3Þ equation and obtained numerical solutions of Kð2;3Þ equation [10]. Frutos
and Lopez-Marcos [11] presented a finite difference method for the numerical integration of Kð2;2Þ equation. Zhou and
Tian [12] studied soliton solution of Kð2;2Þ equation. Xu and Tian [13] investigated the peaked wave solutions of
Kð2;2Þ equation. Zhou et al. [14] obtained kink-like wave solutions and antikink-like wave solutions of Kð2;2Þ equation.
In [15,16], general solutions to the Kðn;nÞ equation were studied. In [17], the nonlinear equation Kðm;nÞ was studied for
all possible values of m and n. In [18], Tian and Yin investigated shock-peakon and shock-compacton solutions for Kðm;nÞ
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equation by variational iteration method. In 2008, Biswas [19] considered the following Kðm;nÞ equation with generalized
evolution term:

ðulÞt þ aumux þ bðunÞxxx ¼ 0; ð3Þ

he presented a solitary wave ansatz and obtained a 1-soliton solution.
In this paper, we will introduce an independent variable transformation to study the Kð3;2Þ equation:

ut þ ðu3Þx þ ðu2Þxxx ¼ 0; ð4Þ

and obtained its some new exact explicit peakon and smooth periodic wave solutions using the bifurcation method of planar
systems and qualitative theory of polynomial differential system [20,21].

Using the following independent variable transformation:

uðx; tÞ ¼ lþ wðnÞ ¼ lþ wðx� ctÞ; ð5Þ

where c ðc – 0Þ is the wave speed, l is a constant, and substituting (5) into (4), we obtain

�cw0 þ ððlþ wÞ3Þ0 þ ððlþ wÞ2Þ00 ¼ 0; ð6Þ

where ‘‘0” is the derivative with respect to n.
Integrating (6) once with respect to n and setting the constant of integration to �l3, we have the following travelling

wave equation of (6):

�2ðwþ lÞw00 ¼ w3 þ 3lw2 þ ð3l2 � cÞwþ 2ðw0Þ2: ð7Þ

Letting y ¼ dw
dn, we get the following planar system

dw
dn
¼ y;

dy
dn
¼ �w3 þ 3lw2 þ ð3l2 � cÞwþ 2y2

2ðwþ lÞ : ð8Þ

System (8) is a two-parameter planar dynamical system depending on the parameter set ðl; cÞ. Since the phase orbits de-
fined by the vector field of system (8) determine all travelling wave solutions of Eq. (4), we should investigate the bifurca-
tions of phase portraits of system (8) in ðw; yÞ-phase plane as the parameters l; c are changed.

Clearly, on such straight line w ¼ �l in the phase plane ðw; yÞ, system (8) is discontinuous. Such system is called a singular
travelling wave system by one of authors [22].

The rest of this paper is organized as follows: In Section 2, we discuss the bifurcations of phase portraits of system (8),
where explicit parametric conditions will be derived. In Section 3, we give some exact parametric representations of peakon
and smooth periodic wave solutions of Eq. (4) in explicit form. A short conclusion will be given in Section 4.

2. Bifurcation sets and phase portraits of system (8)

Using the transformation dn ¼ �2ðwþ lÞds, it carries (8) into the Hamiltonian system

dw
ds
¼ �2ðwþ lÞy; dy

ds
¼ w3 þ 3lw2 þ ð3l2 � cÞwþ 2y2: ð9Þ

Since both system (8) and (9) have the same first integral

ðwþ lÞ2y2 þ 1
5

w3 þ lw2 þ 1
3
ð6l2 � cÞwþ 1

2
lð3l2 � cÞ

� �
w2 ¼ h; ð10Þ

then the two systems above have the same topological phase portraits except the line w ¼ �l. Obviously, w ¼ �l is an
invariant straight-line solution of system (9).

Write D1 ¼ 4c � 3l2; D2 ¼ 1
2 lðl2 � cÞ; ws ¼ �l. Clearly, when D1 > 0, system (9) has three equilibrium point at

Oð0; 0Þ;A1;2ðw1;2;0Þ in w-axis, where w1;2 ¼
�3l�

ffiffiffiffi
D1

p
2 . When D1 ¼ 0, system (9) has two equilibrium points at

Oð0; 0Þ; A12ðw12;0Þ in w-axis, where w12 ¼ � 3l
2 . When D1 < 0, system (9) has only one equilibrium point at Oð0;0Þ in w-axis.

When D2 > 0, there exist two equilibrium points of system (9) in line w ¼ ws at S�ðws;Y�Þ; Y� ¼ �
ffiffiffiffiffiffi
D2
p

.
Let Mðwe; yeÞ be the coefficient matrix of the linearized system of the system (9) at an equilibrium point ðwe; yeÞ. Then we

have

Mðwe; yeÞ ¼
�2ye �2ðwe þ lÞ

3w2
e þ 6lwe þ ð3l2 � cÞ 4ye

� �
;

and at this equilibrium point, we have

TraceðMð/i; yeÞÞ ¼ 2ye;

Jðwe; yeÞ ¼ detMðwe; yeÞ ¼ �8y2
e þ 6w3

e þ 18lw2
e þ 2ð9l2 � cÞwe þ 2lð3l2 � cÞ:
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