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a b s t r a c t

The aim of this paper is to comprehensively analyse the performance of a new ring-type
brake energy dissipator through the finite element method (FEM) (formulation and finite
element approximation of contact in nonlinear mechanics) and experimental comparison.
This new structural device is used as a system component in rockfall barriers and fences
and it is composed of steel bearing ropes, bent pipes and aluminium compression sleeves.
The bearing ropes are guided through pipes bent into double-loops and held by compres-
sion sleeves. These elements work as brake rings. In important events the brake rings con-
tract and so dissipate residual energy out of the ring net, without damaging the ropes. The
rope’s breaking load is not diminished by activation of the brake. The full understanding of
this problem implies the simultaneous study of three nonlinearities: material nonlinearity
(plastic behaviour) and failure criteria, large displacements (geometric nonlinearity) and
friction-contact phenomena among brake ring components. The explicit dynamic analysis
procedure is carried out by means of the implementation of an explicit integration rule
together with the use of diagonal element mass matrices. The equations of motion for
the brake ring are integrated using the explicit central difference integration rule. The pres-
ence of the contact phenomenon implies the existence of inequality constraints. The con-
ditions for normal contact are k P 0; g P 0 and gk ¼ 0, where k is the normal traction
component and g is the gap function for the contact surface pair. To include frictional con-
ditions, let us assume that Coulomb’s law of friction holds pointwise on the different con-
tact surfaces, l being the dynamic coefficient of friction. Next, we define the non-
dimensional variable s by means of the expression s ¼ t=lk, where lk is the frictional
resistance and t is the tangential traction component. In order to find the best brake per-
formance, different dynamic friction coefficients corresponding to the pressures of the
compression sleeves have been adopted and simulated numerically by FEM and then we
have compared them with the results from full-scale experimental tests. Finally, the most
important conclusions of this study are given.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The finite element method is a numerical procedure that can be used to obtain solutions to many engineering problems
involving stress analysis, heat transfer, electromagnetism, and in our case, a new ring-type brake energy dissipator [1–6].
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The main objective of this paper is to determine by FEM the absorbed energy and the failure modes in the different com-
ponents of the brake. Then the FEM results are compared with experimental ones obtained by means of full-scale tests.

The bearing ropes are guided through pipes bent into double-loops and held by compression sleeves forming elements
that work as brake rings. In large events the brake rings contract and so dissipate the residual energy out of the ring net,
without damaging the ropes (see Fig. 1).

The falling rock protection system consists of a product made of nets [4] (interception structure), posts (support struc-
ture), ropes (connection structure) and brakes (connection structure). The energy level of a falling rock protection kit is de-
fined as the kinetic energy of a regular block impacting on the net fence. In this way, the energy dissipating device is the most
important element in order to absorb energy and to avoid the rupture of the connection components, so that the complete
separation occurs of the component itself into two distinct parts.

2. Strong form of the initial boundary value problem

An elastoplastic body occupies a bounded domain X � Rdðd ¼ 2;3Þ with a Lipschitz boundary C, partitioned into three
disjointed measurable parts Cu;Cr and Cc so that measðCuÞ > 0 [7]. A volume force of density~f B acts in X and a surface trac-
tion of density~f S acts on Cr. The body is clamped on Cu and thus the displacement and velocity fields vanish there. On Cc the
body is in contact with other bodies, the so-called compression sleeves, bearing ropes and pipe bends. We model the contact
with Coulomb’s law of dry friction [5,8,9]. Finally, Md denotes the space of the second-order symmetric tensors on Rd, or
equivalently, the space of the symmetric matrices of order d.

The strong formulation of the contact problem is the following:

Problem 1. For all t 2 I½0; T�and all ~x 2 X, find a displacement field ~uð~x; tÞ : X� ½0; T� ! Rd and a stress field
~rð~x; tÞ : X� ½0; T� ! Md so that they satisfy [10]:

1. Linear momentum balance:

r �~rþ~f B ¼ q €~u ð1Þ

in direct notation and

rij;j þ f B
i ¼ q€ui ð2Þ

in indicial notation. In Eqs. (1) and (2), ~r is the Cauchy stress tensor, rij; f B
i being the components of the applied body force

per unit volume~f B, and the scalar q denotes the mass density, which may in general depend on the coordinates~x 2 X. The
two superposed dots on ~u denote partial differentiation with respect to time twice. The notation j in a subscript indicates
partial differentiation of the quantity with respect to that coordinate direction.
2. Initial and boundary conditions: In addition to the previous momentum balance, which must hold for any time t 2 I½0; T�,

the problem is in general subject to certain initial and boundary conditions as well. The boundary conditions are stated by
introducing prescribed tractions

�~f S : Cr � ½0; T� ! Rd and prescribed displacements �~u : Cu � ½0; T� ! Rd and requiring:

rijnj ¼ �f S
i for all ~x 2 Cr; t 2 ½0; T� ð3Þ

ui ¼ �ui for all ~x 2 Cu; t 2 ½0; T� ð4Þ

where nj refers to the components of the outward normal~n to Cr. Initial conditions may be expressed by introducing an ini-
tial displacement field~u0 : �X! Rd and initial velocity field ~v0 : �X! Rd where �X denotes the closure of the open set X; that
is to say, including the boundary @X ¼ Cu [ Cr [ Cc , and requiring:

uijt¼0 ¼ u0i in �X; ð5Þ
_uijt¼0 ¼ v0i in �X ð6Þ

Fig. 1. Geometrical model of the new ring-type brake dissipator (left) and falling rock protection system (right).

1572 J.J. del Coz Díaz et al. / Applied Mathematics and Computation 216 (2010) 1571–1582



Download English Version:

https://daneshyari.com/en/article/4632119

Download Persian Version:

https://daneshyari.com/article/4632119

Daneshyari.com

https://daneshyari.com/en/article/4632119
https://daneshyari.com/article/4632119
https://daneshyari.com

