FISFVIFR

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Ruled surfaces of non-degenerate third fundamental forms in Minkowski 3-spaces

Chul Woo Lee a, Young Ho Kim b, Dae Won Yoon c,*

ARTICLE INFO

Keywords: Minkowski space Laplacian operator Third fundamental form Ruled surface Minimal surface

ABSTRACT

In this paper, we study ruled surfaces in a Minkowski 3-space satisfying some equation in terms of a position vector field and Laplacian operator with respect to non-degenerate third fundamental form. Furthermore, we give a new example of null scroll in a Minkowski 3-space

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Let $\vec{x}: M \to \mathbb{E}^3$ be an isometric immersion of a surface in an Euclidean 3-space. Denote by \vec{H} and Δ , respectively, the mean curvature vector field and the Laplacian operator of M with respect to the Riemannian metric g on M induced from that of \mathbb{E}^3 . Then, as is well known $\Delta \vec{x} = -2\vec{H}$. Takahashi [9] proved that minimal surfaces and spheres are the only surfaces in \mathbb{E}^3 satisfying the condition $\Delta \vec{x} = \lambda \vec{x}, \ \lambda \in \mathbb{R}$, and Garay [2] extended it to the hypersurfaces, that is, he studied the hypersurfaces in \mathbb{E}^{n+1} for which

$$\Delta \vec{x} = A \vec{x}, \quad A \in Mat(n+1, \mathbb{R}), \tag{1.1}$$

where $Mat(n + 1, \mathbb{R})$ is the set of $(n + 1) \times (n + 1)$ -real matrices.

Recently, in [4] Kaimakamis and Papantoniou studied surfaces of revolution with non-degenerate second fundamental form II in a Minkowski 3-space \mathbb{L}^3 satisfying the condition

$$\Delta^{II}\vec{x} = A\vec{x}, \quad A \in Mat(3, \mathbb{R}), \tag{1.2}$$

where Δ^{II} is the Laplacian operator with respect to non-degenerate second fundamental form II.

In this paper, we will investigate ruled surfaces satisfying some equation in terms of a position vector field and Laplacian operator with respect to non-degenerate third fundamental form III of the surface in a Minkowski 3-space \mathbb{L}^3 , that is

$$\Delta^{III}\vec{x} = A\vec{x}, \quad A \in Mat(3, \mathbb{R}), \tag{1.3}$$

where Δ^{III} is the Laplacian operator with respect to non-degenerate third fundamental form III.

In a Minkowski 3-space, the space-like ruled minimal surfaces were studied by Kobayashi [7] and the time-like ruled minimal surfaces by Van de Woestijne [10]. In particular, the following theorems were proved.

E-mail addresses: cwlee1094@hanmail.net (C. Woo Lee), yhkim@knu.ac.kr (Y. Ho Kim), dwyoon@gnu.ac.kr (D. Won Yoon).

^a Department of Mathematics, Dongguk University, Kyongju 780-714, South Korea

^b Department of Mathematics, Teachers' College, Kyungpook National University, Daegu 702-701, South Korea

^c Department of Mathematics Education and RINS, Gyeongsang National University, Jinju 660-701, South Korea

^{*} Corresponding author

Theorem A [7]. Every space-like ruled minimal surface in a Minkowski 3-space is congruent to part of one the following surfaces:

- 1. a space-like plane:
- 2. the helicoid of the 1st kind:
- 3. the helicoid of the 2nd kind:
- 4. the conjugate of Enneper's surface of the 2nd kind.

Theorem B [10]. Every time-like ruled minimal surface in a Minkowski 3-space is congruent to part of one the following surfaces:

- 1. a time-like plane;
- 2. the helicoid of the 1st kind:
- 3. the helicoid of the 2nd kind:
- 4. the helicoid of the 3rd kind;
- 5. the conjugate of Enneper's surface of the 2nd kind;
- 6. a flat B-scroll.

2. Preliminaries

Let \mathbb{L}^3 be a Minkowski 3-space with the scalar product of index 1 given by $\langle , \rangle = -dx_1^2 + dx_2^2 + dx_3^2$, where (x_1, x_2, x_3) is a standard rectangular coordinate system of \mathbb{L}^3 . A vector x of \mathbb{L}^3 is said to be *space-like* if $\langle x, x \rangle > 0$ or x = 0, *time-like* if $\langle x, x \rangle < 0$ and *light-like* or null if $\langle x, x \rangle = 0$ and $x \neq 0$. A time-like or null vector in \mathbb{L}^3 is said to be *causal*. A curve in \mathbb{L}^3 is called *space-like*, *time-like* or null, respectively.

We denote a surface M in \mathbb{L}^3 by

$$\vec{x}(s,t) = (x_1(s,t), x_2(s,t), x_3(s,t)).$$

Let U be the standard unit normal vector field on a surface M defined by $U = \frac{\vec{x}_s \times \vec{x}_t}{\|\vec{x}_s \times \vec{x}_t\|}$, where $\vec{x}_s = \frac{\partial \vec{k}(s,t)}{\partial s}$. Then the first fundamental form I of a surface M is defined by

$$I = E ds^2 + 2F ds dt + G dt^2$$
.

where $E = \langle \vec{x}_s, \vec{x}_s \rangle$, $F = \langle \vec{x}_s, \vec{x}_t \rangle$, $G = \langle \vec{x}_t, \vec{x}_t \rangle$. We define the second fundamental form II and the third fundamental form III of M by, respectively

$$II = e ds^2 + 2f ds dt + g dt^2,$$

$$III = X ds^2 + 2Y ds dt + Z dt^2,$$

where

$$e = \langle \vec{x}_{ss}, U \rangle, \quad f = \langle \vec{x}_{st}, U \rangle, \quad g = \langle \vec{x}_{tt}, U \rangle,$$

$$X = \langle U_s, U_s \rangle, \quad Y = \langle U_s, U_t \rangle, \quad Z = \langle U_t, U_t \rangle.$$

If the third fundamental form III is non-degenerate, then it can be regarded as a (pseudo-) Riemannian metric, and the Laplacian operator Δ^{III} with respect to III can be defined formally on the (pseudo-) Riemannian manifold (M,III). Using classical notation, we define the Laplacian operator Δ^{III} by (cf. [8])

$$\Delta^{III} = -\frac{1}{\sqrt{\mid \mathcal{T} \mid}} \sum_{i,j}^{2} \frac{\partial}{\partial x^{i}} \left(\sqrt{\mid \mathcal{T} \mid} T^{ij} \frac{\partial}{\partial x^{j}} \right), \tag{2.1}$$

where $T_{11} = X$, $T_{12} = Y$, $T_{22} = Z$, $T = \det(T_{ij})$ and $(T^{ij}) = (T_{ij})^{-1}$.

Now, we define a ruled surface M in \mathbb{L}^3 . Let I and J be open intervals containing 0 in the real line \mathbb{R} . Let $\alpha = \alpha(s)$ be a curve of J into \mathbb{L}^3 and $\beta = \beta(s)$ a vector field along α . Then, a ruled surface M is defined by the parametrization given as follows:

$$\vec{x} = \vec{x}(s,t) = \alpha(s) + t\beta(s), \quad s \in J, \ t \in I.$$

For such a ruled surface, α and β are called the *base curve* and the *director vector field*, respectively. According to the causal character of α' and β , there are four possibilities:

- (1) α' and β are non-null and linearly independent.
- (2) α' is null and β is non-null with $\langle \alpha', \beta \rangle \neq 0$.
- (3) α' is non-null and β is null with $\langle \alpha', \beta \rangle \neq 0$.
- (4) α' and β are null with $\langle \alpha', \beta \rangle \neq 0$.

It is easily to see that, with an appropriate change of the curve α , cases (2) and (3) reduce to (1) and (4), respectively (For the details, see [5]).

First of all, we consider the ruled surface of the case (1). In this case, the ruled surface M is said to be *cylindrical* if the director vector field β is constant and *non-cylindrical* otherwise.

Download English Version:

https://daneshyari.com/en/article/4632143

Download Persian Version:

https://daneshyari.com/article/4632143

<u>Daneshyari.com</u>