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a b s t r a c t

Based on a weighted average of the modified Hellinger–Reissner principle and its dual, the
combined hybrid finite element (CHFE) method was originally proposed with a combina-
tion parameter limited in the interval (0,1). In actual computation this parameter plays
an important role in adjusting the energy error of discretization models. In this paper, a
novel expression of the combined hybrid variational form is used to show the relationship
between the resultant method and some Galerkin/least-squares stabilized finite scheme
for plate bending problems. The choice of combination parameter is then extended to
(�1,0)

S
(0,1). Existence, uniqueness and convergence of the solution of discrete schemes

are proved, and the advantage of the parameter extension in computation is discussed. As
an application, improvement of Adini’s rectangular element by the CHFE approach is
performed.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

The combined hybrid finite element (CHFE) method is a special stabilized mixed method developed in recent years for
elasticity problems [1–3]. Based on a weighted average of the formulations of Hellinger–Reissner principle and its dual,
the primal hybrid variational principle, this method does not require finite element pairs of stress and displacement spaces
to satisfy the inf-sup or LBB conditions, and, for any given combination parameter a 2 (0,1), it always yields a convergent
numerical solution.

For fourth-order plate bending problems, due to the C1-continuity requirement, determination of suitable displacement
shape functions is much more complex than those needed for C0-continuity. This C1 difficulty has resulted in many mixed
approaches such as hybrid formulations and least-squares methods which include the use of Lagrangian multiplier and pen-
alty strategies (see the papers [4–18] and the references therein for details). Because of the ‘saddle-point’ nature of the hy-
brid methods, the displacement and bending moments approximations are required to satisfy the inf-sup stability condition
(see, e.g. [4,6]). In [19] the CHFE approach was extended to the numerical analysis of the plate bending problems to avoid the
inf-sup difficulty and to yield stabilized hybrid schemes in the sense that the displacement and bending moments variables
are approximated independently.

Due to elimination of the stress/moments parameters at the element level, the CHFE method preserves the convenience of
the standard Galerkin displacement scheme. Moreover, this method is shown to be of an energy-error-adjusting mechanism
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[20–22], i.e. for given displacement and stress/moments modes, by changing the combination parameter a in the interval
(0,1) one can adjust the energy of the discretization model so as to reduce the energy error. In [20–22], it was shown numer-
ically that the smaller the energy error is, the better the accuracy of the scheme will be. However, in some applications there
are circumstances that the energy error of a CHFE scheme with a special displacement approximation can not be reduced for
the parameter a 2 (0,1) [21], so it is impossible to attain higher numerical accuracy at coarse meshes for the corresponding
CHFE scheme by choosing an appropriate a in (0,1). Hence, a further study of the energy-error-adjusting mechanism of the
CHFE method seems to be required.

In this paper, a new survey of the CHFE method is carried out for plate bending problems so as to disclose some new inter-
esting aspects of the method. By using a novel equivalent expression, the CHFE scheme is shown to enjoy the form of some
Galerkin/least-squares stabilized finite element method [23,24]. This observation then leads to an extension of the combi-
nation parameter interval from (0,1) to (�1,0)

S
(0,1). As an application, improvement of Adini’s plate element by the CHFE

method is investigated.
Throughout the paper the letter C represents a positive constant which is independent of the mesh size h ¼maxXi

fhig and
may be different at its each occurrence.

2. Combined hybrid variational principle

Considering the following plate bending problem:

divdivr ¼ f in X;

r ¼mðD2uÞ in X;

u ¼ ru � n ¼ 0 on @X;

8><>: ð2:1Þ

where X � R2 is a bounded open set, u represents the vertical deflection, r = (rij) (i, j = 1,2) denotes the symmetric bending
moment tensor (i.e. r12 = r21), divdivr = @11r11 + 2@12r12 + @22r22 with @ij ¼ @2

@xi@xj
ði; j ¼ 1;2Þ,

D2u ¼
@11u @12u

@12u @22u

� �
; mðrÞ ¼

r11 þ mr22 ð1� mÞr12

ð1� mÞr12 mr11 þ r22

� �
with m 2 (0,0.5) the Poisson’s coefficient, and n is the unit outer normal vector along @X.

The combined hybrid variational principle corresponding to the problem (2.1) reads as [19]:

inf
ðv ;vcÞ2U�Uc

sup
s2V

1� a
2

dðv ;vÞ � f ðvÞ � b1ðs;v � vcÞ þ a b2ðs; vÞ �
1
2

aðs; sÞ
� �� �

; ð2:2Þ

where Th = {Xi} denotes a subdivision of X, hi the diameter of Xi, and

V ¼
Y

Xi2Th

Hðdivdiv;XiÞ ¼
Y

Xi2Th

s 2 L2ðXiÞ
� 	4

s
; divdivs 2 L2ðXiÞ

� �
;

U ¼ v 2
Y

Xi2Th

H2ðXiÞ; v ¼ rv � n ¼ 0; on @X

( )
;

Uc ¼ H2
0ðXÞ=

Y
Xi2Th

H2
0ðXiÞ ¼ trace of v 2 H2

0ðXÞ on boundaries
Y

Xi2Th

@Xi

( )

are respectively the symmetric bending moment vector space, the deflection space, and the interelemental boundary deflec-
tion space, L2ðXiÞ

� 	4

s
the space of square integrable 2 � 2 symmetric tensors, and

aðr; sÞ ¼
Z

X
m�1ðrÞ : sdx;

b1ðs;v � vcÞ ¼
XI

@Xi

½MnnðsÞrðv � vcÞ � nþMnsðsÞrðv � vcÞ � s� Q nðsÞðv � vcÞ�ds;

b2ðs;vÞ ¼
XZ

Xi

s : D2v dx;

dðu;vÞ ¼
XZ

Xi

mðD2uÞ : D2v dx;

f ðvÞ ¼
Z

X
f v dx;

MnnðsÞ ¼ ðsnÞ � n; MnsðsÞ ¼ ðsnÞ � s; Q nðsÞ ¼ rðtrðsÞÞ � n;
n ¼ unit outer normal vector along @Xi;

s ¼ unit tangent vector along @Xi:
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