
Pre-synthesis resource generation and estimation for
transport-triggered architecture (TTA)-like architecture

Wei Hu a, Yongxin Zhu a, Zonghua Gu b,*, Lei Jiang a

a School of Microelectronics, Shanghai Jiao Tong University, China
b Department of Computer Science and Engineering, Hong Kong University of Science and Technology, China

Available online 21 February 2008

Abstract

Electronic system level (ESL) design is widely adopted in today’s embedded systems development projects to cope with increasing
system complexity and shrinking time-to-market. Even though functional verification can be performed at the system level and early
design stage efficiently, it is still difficult to perform accurate hardware resource estimation. In this paper, we consider the problem of
mapping an input high-level algorithm in C into hardware implementation based on the transport-triggered architecture (TTA)-like
architecture, and present effective techniques for predicting architectural-level parameters and gate-level resource consumption without
going through the lengthy hardware synthesis process in order to facilitate rapid design space exploration. We use some common DSP
algorithms and a complete industry GPS application to show that our resource estimation results match the actual results from hardware
synthesis very well, and they can be used in a feedback loop to optimize the input algorithm specification in C, e.g., the total gate count of
the GPS application is reduced by 25% compared to the original input algorithm specification. In addition, the simulation results of the
generated hardware descriptions in Verilog also show good agreement with the execution results of the original GPS program in C.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Hardware resource estimation; Transport-triggered architecture

1. Introduction

Electronic system level (ESL) design is widely adopted
to cope with increasing complexity of today’s embedded
systems design. There are mature techniques for functional
verification at the system level, but it is also very important
to obtain accurate estimations of the hardware costs of the
final implementation in terms of gate counts. The typical
design flow starts with an input algorithm/application in
a high-level language like C/C++, and generate a RTL
behavior description after a lengthy process of hardware
synthesis, which may take a few days even for applications
of moderate size. Hardware resource information is not
available until after hardware synthesis, and any change
in the input algorithm requires repeating this lengthy pro-

cess, which hampers effective design space exploration.
To reduce design time, the designer often makes a quick
but inaccurate guess of the hardware cost of the final
implementation at early stages of the design process. Accu-
rate pre-synthesis resource estimation is difficult due to the
huge semantic gap between the input algorithm and the
final hardware implementation: the input algorithm is typ-
ically sequential, while the hardware implementation is
inherently parallel. In this paper, we propose a methodol-
ogy for hardware resource estimation targeting a transpor-

tation triggered architecture (TTA)-like architecture [4]. We
analyze the input algorithm in C, identify data dependen-
cies and generate the final hardware description in Verilog.
Time-consuming hardware synthesis only needs to be run
once for a class of similar applications before efficient
resource estimation can be performed for an application
known to be similar to this class of applications.

One reason for our choice of a TTA-like architecture is
its potential for low power execution [6]. In a superscalar

0141-9331/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.micpro.2008.02.001

* Corresponding author.
E-mail addresses: huwei@ic.sjtu.edu.cn (W. Hu), zhuyongxin@sjtu.edu.

cn (Y. Zhu), zgu@cse.ust.hk (Z. Gu), jianglei@ic.sjtu.edu.cn (L. Jiang).

www.elsevier.com/locate/micpro

Available online at www.sciencedirect.com

Microprocessors and Microsystems 32 (2008) 234–242

mailto:huwei@ic.sjtu.edu.cn
mailto:zhuyongxin@sjtu.edu.cn
mailto:zhuyongxin@sjtu.edu.cn
mailto:zgu@cse.ust.hk
mailto:jianglei@ic.sjtu.edu.cn


processor, it is impossible to predict which execution pipe-
line will be active in the future, therefore, all pipelines must
be powered on continuously. But in a TTA-like architec-
ture, functional units are triggered by traffic tokens, so it
is possible to implement a scheduler to save power con-
sumption by power gating or clock gating the functional
units based on the dataflow graph. Since power consump-
tion is an important issue for today’s embedded systems,
we believe it is important to develop effective resource esti-
mation methods for hardware architectures such as TTA.
Furthermore, researchers in programming languages and
compilers have also shown an increasing interest in exploit-
ing redundancy and parallelism in the hardware architec-
ture by providing new programming languages as well as
compiler mechanisms useful for low power system design.
For example, as part of the National Compiler Infrastruc-
ture Program in the US, the Zephyr compiler [1] supports
operations on register transfer lists, which are similar to
TTA operations. Another reason for choosing a TTA-like
architecture is that it is fairly easy to convert a dataflow
graph (DFG) to a hardware data-path on a TTA-like
architecture [20], which makes hardware resource estima-
tion for TTA-like architecture easier than for an architec-
ture with complex and irregular datapath. For a single
output, the data-path has the shape of a tree with layers
of separate registers as latches and arithmetic units. If we
consolidate separate registers into one register file and
add bus connections, then we can obtain the data-path
for a TTA-like architecture.

Fig. 1 shows our overall workflow. Given an input algo-
rithm/application in high-level language such as C/C++,
the designer first applies static analysis on the dataflow
graphs (DFG) and control flow graphs (CFG) to obtain
an approximated architecture, then he/she carries out
design space exploration to further optimize the approxi-
mated architecture. The designer applies dynamic analysis
to obtain information on the average execution count of
each basic block, which is combined with static analysis
results to project the runtime performance. In addition to

performance projection, resource estimation can be per-
formed to obtain gate counts for each hardware element
and the whole application at the early design stage. The
final architecture that meets hardware resource and perfor-
mance constraints is generated at the end of the design
space exploration process. In the design process, the
designer only needs to search a small portion of the whole
design space based on the approximated architecture
parameters. Fig. 2 shows the interaction between the
designer and our methodology.

The rest of the paper is structured as follows. We first
discuss related work in Section 2. We then describe gener-
ation of hardware components in Section 3. We explain the
resource estimation algorithm in Section 4.3, and present
an industry application as a case study in Section 5.
Finally, we draw conclusions in Section 6.

2. Related work

Early research on hardware generation or resource esti-
mation [2,10] is typically based on hardware synthesis.
The input algorithm is parsed to generate DFG and CFG,
which are further processed through scheduling and alloca-
tion to generate control logic and data-path. Hardware
resource consumption is obtained from the generated finite
state machines and data-path. These early efforts are in line
with the classic approach to hardware generation [20], but
these solutions are only applicable to relatively small algo-
rithms and cannot scale to systems of realistic size and com-
plexity, since the lengthy hardware synthesis process may be
an impediment to effective design space exploration.

Some later research efforts [9,11] focus on hardware–soft-
ware partitioning, where hardware complexity is reduced
compared to a pure hardware implementation. However,
these approaches often do not explicitly take into account
the operational parallelism and sharing in hardware, which
may result in performance and power consumption penalties
in the hardware partition. There have been some recent
research on resource estimation and generation targeting
new hardware platforms like reconfigurable SoCs, e.g.,Fig. 1. Overall workflow of our methodology.

Fig. 2. Interaction between user (the designer) and our methodology.

W. Hu et al. / Microprocessors and Microsystems 32 (2008) 234–242 235



Download English Version:

https://daneshyari.com/en/article/463216

Download Persian Version:

https://daneshyari.com/article/463216

Daneshyari.com

https://daneshyari.com/en/article/463216
https://daneshyari.com/article/463216
https://daneshyari.com

