Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Weighted composition operators from the weighted Bergman space to the weighted Hardy space on the unit ball

Stevo Stević^{a,*}, Sei-Ichiro Ueki^b

^a Mathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia ^b Faculty of Engineering, Ibaraki University, Hitachi 316-8511, Japan

ARTICLE INFO

Keywords: Weighted composition operators Bergman spaces Hardy spaces Essential norm

ABSTRACT

We investigate the weighted composition operator from the weighted Bergman space into the weighted Hardy space on the unit ball. As a consequence of the investigation, we also give a characterization for the boundedness and compactness of the operator whose the target space is the Hardy space.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let \mathbb{B} denote the open unit ball of the complex *n*-dimensional Euclidean space \mathbb{C}^n and $H(\mathbb{B})$ denote the space of all holomorphic functions on \mathbb{B} . For $0 and <math>\beta \ge 0$ we define the *weighted Hardy space* $H_{\beta}^p(\mathbb{B})$ as follows:

$$H^{p}_{\beta}(\mathbb{B}) = \left\{ f \in H(\mathbb{B}) : \sup_{0 < r < 1} (1 - r)^{\beta} \int_{\partial \mathbb{B}} \left| f(r\zeta) \right|^{p} \, d\sigma(\zeta) < \infty \right\},$$

where $d\sigma$ is the normalized Lebesgue measure on the boundary $\partial \mathbb{B}$ of \mathbb{B} (see, also [15], as well as [10], for an equivalent definition of the space). We also define the norm $\|\cdot\|_{H^0_{\sigma}}$ on this space as follows:

$$\|f\|_{H^p_{\beta}}^p = \sup_{0 < r < 1} (1-r)^{\beta} \int_{\partial \mathbb{B}} |f(r\zeta)|^p d\sigma(\zeta).$$

Furthermore we consider the weighted Bergman space $A^p_{\alpha}(\mathbb{B})(0 -1)$ and the Hardy space $H^p(\mathbb{B})(0 defined by$

$$\begin{split} & A^p_{\alpha}(\mathbb{B}) = \Big\{ f \in H(\mathbb{B}) : \| f \|_{A^p_{\alpha}}^p = \int_{\mathbb{B}} |f(z)|^p c_{\alpha} (1 - |z|^2)^{\alpha} dV(z) < \infty \Big\} \\ & H^p(\mathbb{B}) = \Big\{ f \in H(\mathbb{B}) : \| f \|_{H^p}^p = \sup_{0 < r < 1} \int_{\partial \mathbb{B}} |f(r\zeta)|^p d\sigma(\zeta) < \infty \Big\}, \end{split}$$

where dV is the normalized Lebesgue measure on \mathbb{B} and c_{α} is a normalization constant, that is, it is chosen such that $\|1\|_{A_{\alpha}^{p}} = 1$. For the sake of convenience, we use the notation $dV_{\alpha}(z) = c_{\alpha}(1 - |z|^{2})^{\alpha}dV(z)$. By these definitions of spaces, we see that $H_{\beta}^{p}(\mathbb{B})$ coincides with $H^{p}(\mathbb{B})$ when $\beta = 0$ and $H_{\alpha}^{p}(\mathbb{B})$ is a closed subspace in $A_{\alpha}^{p}(\mathbb{B})$ when $\alpha \ge 0$.

Let φ be a holomorphic self-map of \mathbb{B} and $u \in H(\mathbb{B})$. Then φ and u induce a weighted composition operator uC_{φ} on $H(\mathbb{B})$ which is defined by $uC_{\varphi}f = u(f \circ \varphi)$. This type of operators acting between various spaces of holomorphic functions, has been studied by many authors. For some classical results, see, for example, [3]. When one of the spaces is the Bloch-type or the

* Corresponding author. E-mail addresses: sstevic@ptt.rs (S. Stević), sei-ueki@mx.ibaraki.ac.jp (S.-I. Ueki).

^{0096-3003/\$ -} see front matter @ 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.10.048

weighted-type space, this operator have been considered, for example, in [2,5–9,16–19,21,26,29–31] (see also the references therein). In the following papers [11,23–25,27], uC_{φ} acting between the weighted Bergman space and the Hardy space on the unit ball has been studied (see also [4] for the one-dimensional case). These papers characterized the boundedness and compactness of uC_{φ} in terms of the Carleson measure condition and the behavior of some integral transform which involves symbols u and φ . However they did not give a characterization for the case $uC_{\varphi} : A_{\pi}^{P}(\mathbb{B}) \to H^{q}(\mathbb{B})$.

In this paper, we will consider the boundedness and compactness of the operator $uC_{\varphi} : A_{\chi}^{p}(\mathbb{B}) \to H_{\beta}^{q}(\mathbb{B})$. We also give an estimate for the essential norm of the operator (for some related results, see, for example, [3,19,20,25,28] and the references therein). As a consequence of our main results, we characterize the boundedness and compactness of $uC_{\varphi} : A_{\chi}^{p}(\mathbb{B}) \to H^{q}(\mathbb{B})$.

2. Auxiliary results

In order to prove our results, we will need some notation and lemmas.

Lemma 1. Let $0 and <math>\alpha > -1$. Suppose $f \in H(\mathbb{B})$ and $z \in \mathbb{B}$. Then

$$|f(z)| \leq (1 - |z|^2)^{-\frac{\alpha + n + 1}{p}} ||f||_{A^p_{\alpha}}$$

Proof. This result is well-known. Its proof can be found in [1, Corollary 3.5].

Let $\varphi_z(z \in \mathbb{B})$ be the biholomorphic involution of \mathbb{B} described in [13, p. 25]. For $z \in \mathbb{B}$ and 0 < r < 1, we set $E(z, r) = \varphi_z(r\mathbb{B})$. According to [13, p. 29, Section 2.2.7], E(z, r) consists of all $w \in \mathbb{B}$ that satisfy

$$\frac{|P_z w - c|^2}{(r\rho)^2} + \frac{|w - P_z w|^2}{r^2 \rho} < 1,$$

where $P_z w = \frac{\langle w, z \rangle}{\langle z, z \rangle} z$, $c = \frac{(1-r^2)z}{1-(r|z|)^2}$ and $\rho = \frac{1-|z|^2}{1-(r|z|)^2}$.

Lemma 2. Let $0 and <math>f \in H(\mathbb{B})$. Then

$$|f(z)|^{p} \leq \frac{(1-r^{2})^{n}}{r^{2n}} \int_{E(z,r)} |f(w)|^{p} (1-|w|^{2})^{-n-1} dV(w),$$

for each r, 0 < r < 1.

Proof. The *M*-subharmonicity of $|f|^p$ verifies the above estimate. For the detail of the proof, we can refer [22, p. 33].

Recall that every $f \in H(\mathbb{B})$ has the homogeneous expansion

$$f(z) = \sum_{k=0}^{\infty} \sum_{|\gamma|=k} c(\gamma) z^{\gamma},$$

where $\gamma = (\gamma_1, \dots, \gamma_n)$ is a multi-index, $|\gamma| = \gamma_1 + \dots + \gamma_n$ and $z^{\gamma} = z_1^{\gamma_1} \dots z_n^{\gamma_n}$. For the homogeneous expansion of f and any integer $j \ge 1$, let

$$R_j f(z) = \sum_{k=j}^{\infty} \sum_{|\gamma|=k} c(\gamma) z^{\gamma},$$

and $K_j = I - R_j$ where If = f is the identity operator.

Lemma 3. Let $\alpha > -1$. If $1 , then <math>\|R_j f\|_{A^p_{\alpha}} \to 0$ as $j \to \infty$ for each $f \in A^p_{\alpha}(\mathbb{B})$.

Proof. See [25, Corollary 2.1]. □

Lemma 3 and the uniform boundedness principle show that $(R_j)_{j \in \mathbb{N}}$ is a uniformly bounded sequence in $A_{\alpha}^{p}(\mathbb{B})$.

Lemma 4. If uC_{φ} is bounded from $A^p_{\alpha}(\mathbb{B})$ into $H^q_{\beta}(\mathbb{B})$, then

 $\|uC_{\varphi}\|_{e,A^{p}_{\alpha}(\mathbb{B})\to H^{q}_{\beta}(\mathbb{B})} \leq \liminf_{j\to\infty} \|uC_{\varphi}R_{j}\|_{A^{p}_{\alpha}(\mathbb{B})\to H^{q}_{\beta}(\mathbb{B})},$

where $\|\cdot\|_{eA^p_{\alpha}(\mathbb{B})\to H^q_{\alpha}(\mathbb{B})}$ and $\|\cdot\|_{A^p_{\alpha}(\mathbb{B})\to H^q_{\alpha}(\mathbb{B})}$ denote the essential norm and the operator norm respectively.

Proof. See [3, p. 134, Lemma 3.16]

Lemma 5. Let $1 and <math>\alpha > -1$. For each $w \in \mathbb{B}$, positive integer j and $f \in A^p_{\alpha}(\mathbb{B})$,

$$|R_j f(w)| \leq \|f\|_{A^p_{\alpha}} \sum_{k=j}^{\infty} \frac{\Gamma(k+n+1+\alpha)}{k! \Gamma(n+1+\alpha)} |w|^k$$

Download English Version:

https://daneshyari.com/en/article/4632285

Download Persian Version:

https://daneshyari.com/article/4632285

Daneshyari.com