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ARTICLE INFO ABSTRACT
Keywords: Let X be a smooth quadric of dimension 2m in P2™*! and let Y,Z c X be subvarieties both of
Homptopy methods dimension m which intersect transversely. In this paper we give an algorithm for comput-
Continuation ing the intersection points of Y NZ based on a homotopy method. The homotopy is con-

Polynomial systems

: ! structed using a C*-action on X whose fixed points are isolated, which induces
Kinematics

Bialynicki-Birula decompositions of X into locally closed invariant subsets. As an applica-
tion we present a new solution to the inverse kinematics problem of a general six-revolute
serial-link manipulator.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

This paper introduces a homotopy construction for computing numerical approximations to the intersection of two
m-dimensional algebraic subsets of a smooth 2m dimensional quadric. This new method joins the larger family of homotopy
techniques, also known as continuation methods, which have proven to be effective for numerically solving systems of poly-
nomial equations [10,16]. These methods provide a means of constructing a homotopy function and a finite set of start points
such that the paths emanating from the start points end in a finite set of endpoints that contain all isolated solutions of the
equations. For efficiency, it is desirable that the number of homotopy paths is as small as possible, preferably equal to the
actual number of isolated solutions.

Over the years, the pursuit of reduction in the number of homotopy paths has led to a series of homotopy constructions,
each successively recognizing more of the structure of the given polynomials. Notable milestones are total degree homoto-
pies [4], multihomogeneous formulations [11], linear set structures [19], and polyhedral homotopies [6,20]. The latter com-
pletely accounts for the sparse structure of the monomials in the system, but requires the computation of the mixed volume
of the associated Newton polytopes, a combinatorial problem. Nevertheless, the approach is general and can be completely
automated. Even the polyhedral homotopies may require more than the minimal number of paths, as in practice, the coef-
ficients of a polynomial system may have interrelations that reduce the number of isolated roots compared to a system with
the same monomials but general coefficients. Parameter homotopies [12,16] capture the coefficient relations, but require an
initial solution of a generic problem in the parameterized family, which is usually obtained by one of the aforementioned
general techniques. More recently, techniques have been introduced for solving systems by introducing the equations one
at a time [15,5]. This often has the effect of revealing structure at early stages of the computation, when it is inexpensive
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to work with fewer variables and equations, thereby reducing the number of paths and the cost in the final, most expensive,
stage involving all the equations. These methods do not incur the cost of the mixed volume computation and they may take
advantage of coefficient relations. For some large, sparse systems, the regeneration equation-by-equation method [5] out-
performs the polyhedral approach even though it uses more solution paths. Several computer codes [2,9,17,18,21,22] are
available that implement one or more of the homotopies just mentioned.

The method presented in this paper resembles the equation-by-equation approaches in that less expensive preliminary
computations can reveal structure that reduces the path count, and hence the computational expense, of the final homotopy.
The technique is based on the cell decomposition of a quadric induced by a multiplicative C*-action. This C*-homotopy ap-
plies when one seeks the isolated points in the intersection of two m-dimensional algebraic subsets of a 2m-dimensional
smooth quadric in P?™!. While this is not as general as the techniques previously mentioned, the situation arises often
in applications, where quadrics are frequently encountered. The method has the desirable property that it subdivides the
target problem in 2m + 1 dimensions into four subproblems, each in only m-dimensions. The solutions to these subproblems
are combined to form the start points for a final homotopy that solves the target problem. It may happen that one or more of
the subproblems has fewer solutions than its total degree would suggest, in which case the final homotopy has fewer than
the total degree number of paths.

This work was inspired by a geometrical problem from robotics: the inverse kinematics of a general six-revolute (6R) se-
rial-link robot. The objective in inverse kinematics is to find all sets of joint angles that place the end-effector of a robot in a
desired location. For general 6R robots, that is, for robots not having certain simplifying geometries such as intersecting wrist
axes, it has been known since 1986 [13] that the problem has 16 solutions (over the complex number field). The early proofs
and the related algorithms for calculating the joint angles depend on rather intricate algebraic manipulations of the defining
polynomial equations. However, in 2005, Selig [14, Section 11.5] gave a simple, although abstract, proof based on intersec-
tion theory and a cell decomposition of the Study quadric, an elegant representation of SE(3), the space of rigid-body
displacements.

In the work reported here, we turn Selig’s abstract proof into a concrete homotopy method for numerically solving the
inverse kinematics problem using just 16 paths in the final homotopy to find the 16 solutions. As the Study quadric is
fundamental to robotics, we expect that an algorithm for 6R inverse kinematics that makes strong use of the properties
of the Study quadric might lead to better insight on solving other problems in robot kinematics. In fact, as outlined above,
our pursuit of the 6R problem has lead to a solution algorithm that applies much more generally than to robot
kinematics.

This paper is organized as follows. We begin in Section 2 by describing the C*-action on a quadric, that is central to our
homotopy construction, and by presenting the cell decomposition that it induces. In doing so, we introduce the notation used
throughout the paper. After a brief review, in Section 3, of some basic ideas in continuation, Section 4 presents the homotopy
construction and the method of determining start points for the homotopy. The original statement of the algorithm in Sec-
tion 4.1 is made for intersecting algebraic sets determined implicitly by polynomial equations, while in Section 4.2 the meth-
od is extended to cover the case where the sets are defined parametrically. In Section 5 we show the application of the
method to the 6R inverse kinematics problem.

2. C"-Actions and cell decomposition

Let X be a smooth quadric hypersurface of even dimension 2m in the projective space P?™' over C. Let
[@o» - - Gm> Dos - - - » Pra) D€ homogeneous coordinates' on P?™!, We may assume that X is defined by the equation
Q(q,p) = qoPo + q1P1 + -+ + quPm = 0. (M

This is because any smooth quadric is given by a polynomial of the form x"Ax = 0, where A is a nonsingular, symmet-
ric matrix. Hence, A can be written as A = A'?A"2, where A2 is a symmetric matrix with inverse A~/2. Let N be the
matrix

!

andletq=1[q, -+ qnJandp=[p, --- pPn]berow vectors. Then one may make the nonsingular change of coordinates
x =A'2N[q,p]", where upon

x"Ax = [q,p]N"N[g.p]" = 4Q(q.p).

So xTAx = 0 implies that Q(g,p) = 0.
We fix an action of the multiplicative group C* = C \ {0} on X defined as follows: for t € C*

t[q07 e 7qm7p07 ce 7pm] = [qO': tq17 R tmqm7 tzmp07 tzm_]p'h AR tmpm] (3)

! We use square brackets [...] to denote homogeneous coordinates. Each point in P" corresponds to a line through the origin in C™*'. For y,z € P", the
equality y = z means that the corresponding homogeneous coordinates in C"*! are equal up to a nonzero scalar.
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