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a b s t r a c t

The generalized solitary solutions of the classical Drinfel’d–Sokolov–Wilson equation
(DSWE) are obtained using the Exp-function method. Then, some of these solutions are
easily converted into kink-shaped solutions and blow-up solutions by a simple
transformation.
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1. Introduction

The investigation of exact solutions of nonlinear wave equations plays an important role in the study of nonlinear phys-
ical phenomena. Recently, many effective methods for obtaining exact solutions of nonlinear wave equations have been pro-
posed, such as Bäcklund transformation method [1], homogeneous balance method [2,3], bifurcation method [4–6], the
hyperbolic tangent function expansion method [7,8], the Jacobi elliptic function expansion method [9–11], Hirotas bilinear
method [12] and so on.

In 2006, He and Wu proposed a new method, called Exp-function method, to obtain exact solutions of nonlinear differ-
ential equations [13]. Then, it was studied in a lot of problems [14–17] and so on. On the other hand, the authors in the paper
[18] analyze the application of the Exp-function method to some nonlinear evolution equations. Recently, possibilities of
some new methods in mathematical physics have been discussed by the authors.

In this paper, we consider the classical Drinfel’d–Sokolov–Wilson equation

ut þ pvvx ¼ 0; ð1Þ
v t þ qvxxx þ ruvx þ suxv ¼ 0: ð2Þ

where p, q, r, s are some nonzero parameters.
Recently, DSWE and the coupled DSWE, a special case of the classical DSWE, have been studied by several authors [19–

25]. In this study, we construct the Exp-function method to solve Eqs. (1) and (2). The solution procedure of this method, by
the help of symbolic computation of Matlab or Mathematica, is of utter simplicity.

2. Exp-function method

Using a complex variation g defined as g ¼ kðx� ctÞ, we can convert Eqs. (1) and (2) into ordinary different equations,
which read

� cu0 þ pvv 0 ¼ 0; ð3Þ
� cv 0 þ qk2v 000 þ ruv 0 þ su0v ¼ 0; ð4Þ

where the prime denotes the derivative with respect to g.
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Integrating Eq. (3), we obtain

u ¼ pv2

2c
þ c1; ð5Þ

where c1 is an integration constant.
Substituting u into Eq. (4) yields:

2cqk2v 000 þ pðr þ 2sÞv2v 0 þ 2cðrc1 � cÞv 0 ¼ 0: ð6Þ

According to the Exp-function method, we assume that the solution of Eq. (6) can be expressed in the following form:

vðgÞ ¼
Pd

n¼�can expðngÞPq
m¼�pbm expðmgÞ

; ð7Þ

where c, d, p and q are positive integers which are unknown to be further determined, an and bm are unknown constants. Eq.
(7) can be rewritten in an alternative form as follows:

vðgÞ ¼ ac expðcgÞ þ � � � þ a�d expð�dgÞ
bp expðpgÞ þ � � � þ b�q expð�qgÞ : ð8Þ

To determine values of c and p, we balance the linear term of highest order of Eq. (6) with the highest order nonlinear term.
By simple calculation, we have

v 000 ¼ c1 exp½ð7pþ cÞg� þ � � �
c2 exp½8pg� þ � � � ð9Þ

and

v2v 0 ¼ c3 exp½ðpþ 3cÞg� þ � � �
c4 exp½4pg� þ � � � ¼ c3 exp½ð5pþ 3cÞg� þ � � �

c4 exp½8pg� þ � � � ; ð10Þ

where ci are determined coefficients only for simplicity.
Balancing highest order of Exp-function in Eqs. (9) and (10), we have

7pþ c ¼ 5pþ 3c ð11Þ

which leads to the result

p ¼ c: ð12Þ

Similarly to determine values of d and q, we balance the linear term of lowest order in Eq. (6) with the lowest order non-
linear term v 000 and v2v 0, we have

v 000 ¼ � � � þ d1 exp½�ð7qþ dÞg�
� � � þ d2 exp½�8qg� ð13Þ

and

v2v 0 ¼ � � � þ d3 exp½�ðqþ 3dÞg�
� � � þ d4 exp½�4qg� ¼ c3 exp½�ð5qþ 3dÞg� þ � � �

c4 exp½�8qg� þ � � � ; ð14Þ

where di are determined coefficients only for simplicity.
Balancing lowest order of Exp-function in Eqs. (13) and (14), we have

�ð7qþ dÞ ¼ �ð5qþ 3dÞ ð15Þ

which leads to the result

q ¼ d: ð16Þ

For simplicity, we set p ¼ c ¼ 1 and q ¼ d ¼ 1, then Eq. (8) reduces to

vðx; tÞ ¼ a1 expðgÞ þ a0 þ a�1 expð�gÞ
b1 expðgÞ þ b0 þ b�1 expð�gÞ : ð17Þ

In case b1 – 0 Eq. (17) can be simplified as

vðx; tÞ ¼ a1 expðgÞ þ a0 þ a�1 expð�gÞ
expðgÞ þ b0 þ b�1 expð�gÞ : ð18Þ

Substituting Eq. (18) into Eq. (6), we have
1
A
½C3 expð3gÞ þ � � � þ C0 þ � � � þ C�3 expð�3gÞ�; ð19Þ
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