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a b s t r a c t

Certain strongly non-linear conservative oscillators are approached with the field method,
which is combined with the convolution integral method. A complete set of their adiabatic
invariants are derived, on the basis of which approximate solutions for motion can be
obtained.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

It is generally accepted that invariants (conserved quantities) of mechanical systems provide useful insights into the qual-
itative properties of their dynamics. As far as their classification is concerned, invariants can be classified as ‘exact’ (conser-
vation laws, constants of motion) and ‘adiabatic’ (approximate conservation laws, approximate invariants). According to the
definition given in [1], some function represents an adiabatic invariant to OðeNÞ if its total derivative, by virtue of the equa-
tion of motion, is of N þ 1 order with respect to a small parameter e. If that derivative is equal to zero, the function represents
the exact invariant. The invariants can also be broadly classified according to the degree of the polynomial form in momenta
or velocities as linear, quadratic, cubic, etc. [2].

A great number of various approaches has been aimed at obtaining adiabatic invariants of mechanical oscillators. It was
Burgers [3] who pioneered research in adiabatic invariants. Many other studies in after years have contributed to this field
[4–10], attesting to the theoretical and practical importance of the knowledge of these quantities. In spite of considerable
attention which has been paid to finding them, there still exists interest in deriving adiabatic invariants, especially for the
systems modelled by non-linear differential equations.

In this study, our aim is to obtain adiabatic invariants of non-linear autonomous oscillators:

€xþ GðxÞ ¼ 0; ð1Þ
xð0Þ ¼ a; _xð0Þ ¼ 0; ð2Þ

where GðxÞ is an odd function of a coordinate x, which does not necessarily have a linear term and overdots denote differ-
entiation with respect to time t. The problem is approached by the field method technique [11,12], which has been approved
as beneficial for studying different problems of disparate areas of mechanics [11,13–17]. In this approach it results in a com-
plete set of linear time-dependent invariants of convolution type. Their combination leads to a quadratic adiabatic invariant,
whose correspondence with an exact invariant is discussed. Namely, it is sometimes possible to construct approximate
invariants even for the systems admitting exact invariants, which helps in finding the solution of the problem, although
in an approximate manner [2]. Thus, having found the complete set of the adiabatic invariants of the system (1), its approx-
imate solution of motion is derived. In comparison to many techniques for the construction of the analytical approximations
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to the non-linear oscillators (1) [20–23], the proposed procedure gives the approximate solution for motion as well as new
results regarding the qualitative properties of the system being considered in the form of its adiabatic invariants.

2. Field method approach

In order to apply the field method algorithm developed for obtaining conservation laws of the linear one-degree of free-
dom oscillators [12], the system (1) can be written down as:

_x ¼ p; _p ¼ �x2xþ F; ð3Þ

where

F � FðtÞ ¼ x2xðtÞ � GðxðtÞÞ; ð4Þ

and x is the frequency to be found. Then, the basic assumption of the field method will be introduced, which is that the coor-
dinate x can be represented as a field depending on time t and the momentum (i.e. the velocity) p

x ¼ Uðt;pÞ: ð5Þ

Partial differentiation of the expression (5) in combination with (3) yields

@U
@t
þ @U
@p
½�x2U þ FðtÞ� � p ¼ 0: ð6Þ

The solution of this partial differential equation can be assumed in the form [12,17–19]:

U ¼ Apþ f ðtÞ; ð7Þ

with A being a constant and f ðtÞ being an unknown function of time. Substituting it into (6) and equating the terms involving
p and the free terms with zero, one has:

A1=2 ¼ �
i
x
; ð8Þ

f tð Þ ¼ CeAx2 t � AeAx2 t
Z t

0
F ðsÞe�Ax2 sds; ð9Þ

where i is an imaginary unit and C is a constant.
For two values of the constant A (8), algebraic transformations of the assumed form (7) lead to the expressions in which

the convolution integrals [24] appear:

x� ip
x
þ i

x

Z t

0
½x2xðsÞ � GðxðsÞÞ�e�ixðs�tÞds ¼ C1ei xt; ð10Þ

xþ ip
x
� i

x

Z t

0
½x2xðsÞ � GðxðsÞÞ�eix ð s�tÞds ¼ C2e�i xt: ð11Þ

To solve the integrals in (10) and (11), the solution for the coordinate x inside the square brackets is assumed as
xðsÞ � C1ei xsþC2e�ix s

2 . In accordance with the initial conditions (2), this form gives the constants C1 and C2:

C1 ¼ C2 ¼ a: ð12Þ

Now, the expressions (10) and (11) can be presented as:

x� ip
x

� �
e�ix t þ i

x

Z t

0
x2 aþ ae�i2xs

2
� e�ixsG

aei xs þ ae�ixs

2

� �� �
ds ¼ a; ð13Þ

xþ ip
x

� �
ei xt � i

x

Z t

0
x2 aei2xs þ a

2
� eixsG

aei xs þ ae�ixs

2

� �� �
ds ¼ a; ð14Þ

the frequency x will be calculated from the elimination of secular terms among the terms generated by the integrals. Elim-
inating the secular terms and integrating the remaining terms, some function of time will be obtained. Together with the
terms in front of the integrals, they will form two independent linear adiabatic invariants. They provide additional informa-
tion about the behavior of the system being considered, giving us the combinations of the parameters of the system which
remain almost constant during time. Besides, they enable us to find a quadratic approximate invariant as their product. It can
be presented in the form:

x2 þ p2

x2 þ xD1ðtÞ þ pD2ðtÞ þ D3ðtÞ ¼ a2; ð15Þ

where D1ðtÞ;D2ðtÞ and D3ðtÞ stand for some functions of time. Depending explicitly on time, the quadratic form (15) differs
from the corresponding exact invariant (total energy conservation law) of the system (1):
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