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a b s t r a c t

The existence of coincidence points and common fixed points for four mappings satisfying
generalized contractive conditions without exploiting the notion of continuity of any map
involved therein, in a cone metric space is proved. These results extend, unify and gener-
alize several well known comparable results in the existing literature.
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1. Introduction and preliminaries

Jungck [9] defined a pair of self-mappings to be weakly compatible if they commute at their coincidence points. In recent
years, several authors have obtained coincidence point results for various classes of mappings on a metric space, utilizing
these concepts. For a survey of coincidence point theory, its applications, comparison of different contractive conditions
and related results, we refer to [4,6,11] and the references contained therein. Huang and Zhang [5] generalized the concept
of a metric space, replacing the set of real numbers by an ordered Banach space and obtained some fixed point theorems for
mappings satisfying different contractive conditions. Subsequently, Abbas and Jungck [2] and Abbas and Rhoades [1] studied
common fixed point theorems in cone metric spaces ( see also, [3,5,8,13] and the references mentioned therein). In this pa-
per, common fixed point theorems for two pairs of weakly compatible maps, which are more general than R-weakly com-
muting and compatible mappings, are obtained in the setting of cone metric spaces, without exploiting the notion of
continuity. It is worth mentioning that our results do not require the assumption that the cone is normal. Our results extend
and unify various comparable results in the literature [2–4,7,8]. Consistent with Huang and Zhang [5], the following defini-
tions and results will be needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:

(a) P is closed, non-empty and P–f0g;
(b) a; b 2 R; a; b P 0; x; y 2 P imply that axþ by 2 P;
(c) P \ ð�PÞ ¼ f0g.

Given a cone P � E; we define a partial ordering 6 with respect to P by x 6 y if and only if y� x 2 P; where x� y means
that y� x 2 int P (interior of P). A cone P is said to be normal if there is a number K > 0 such that for all x; y 2 E,

0 6 x 6 y implies kxk 6 Kkyk:

The least positive number satisfying the above inequality is called the normal constant of P.
Rezapour and Hamlbarani [12] proved that there is no normal cone with normal constant K < 1 and for each k > 1 there

are cones with normal constants K > k.
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Definition 1.1. Let X be a non-empty set. Suppose that the mapping d : X � X ! E satisfies:

(d1) 0 6 dðx; yÞ for all x; y 2 X and dðx; yÞ ¼ 0 if and only if x ¼ y;
(d2) dðx; yÞ ¼ dðy; xÞ for all x; y 2 X;
(d3) dðx; yÞ 6 dðx; zÞ þ dðz; yÞ for all x; y; z 2 X.

Then d is called a cone metric on X and ðX; dÞ is called a cone metric space. The concept of a cone metric space is more
general than that of a metric space.

Definition 1.2. Let ðX; dÞ be a cone metric space, fxng a sequence in X and x 2 X: For every c 2 E with 0� c; we say that fxng
is

(i) a Cauchy sequence if there is an N such that, for all n;m > N, dðxn; xmÞ � c:
(ii) a convergent sequence if there is an N such that, for all n > N; dðxn; xÞ � c for some x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X. It is known that fxng
converges to x 2 X if and only if dðxn; xÞ ! 0 as n!1. A subset A of X is closed if every Cauchy sequence in A has its limit
point in A.

Definition 1.3. Let f and g be self-maps on a set X . If w ¼ fx ¼ gx, for some x in X, then x is called coincidence point of f and g,
where w is called a point of coincidence of f and g.

Definition 1.4. Let f and g be two self-maps defined on a set X. Then f and g are said to be weakly compatible if they com-
mute at every coincidence point.

Remark 1.5. If E is a real Banach space with a cone Pand if a 6 ha where a 2 P and h 2 ð0;1Þ, then a ¼ 0.

Remark 1.6. If 0 6 u� c for each 0� c then u ¼ 0.

2. Common fixed point results

The following Lemma not only improves but also extends Lemma 1 of [10] cone metric spaces.

Lemma 2.1. Let f, g, S and T be self-maps on a cone metric space X with cone P having non-empty interior, satisfying f ðXÞ � TðXÞ
and gðXÞ � SðXÞ. Define fxng and fyng by y2nþ1 ¼ fx2n ¼ Tx2nþ1; y2nþ2 ¼ gx2nþ1 ¼ Sx2nþ2; n P 0. Suppose that there exist a
k 2 ½0;1Þ such that

dðyn; ynþ1Þ 6 kdðyn�1; ynÞ for each n P 1: ð2:1Þ

Then either

(a) ff ; Sg and fg; Tg have coincidence points, and fyng converges, or
(b) fyng is Cauchy.

Moreover, if X is complete, then fyng converges to a point z 2 X and

dðyn; zÞ 6
kn

1� k
dðy0; y1Þ for each n > 0: ð2:2Þ

Proof. To prove part (a), suppose that there exists an n such that y2n ¼ y2nþ1. Then, from the definition of
fyng; gx2n�1 ¼ Sx2n ¼ fx2n ¼ Tx2nþ1, and f and S have a coincidence point. Moreover, from (2.1),

dðy2nþ1; y2nþ2Þ 6 kdðy2n; y2nþ1Þ ¼ 0;

so that y2nþ1 ¼ y2nþ2; i.e., fx2n ¼ Tx2nþ1 ¼ gx2nþ1 ¼ Sx2nþ2, and g and T have a coincidence point. In addition, repeated use of
(2.1) yields y2n ¼ ym for each m > 2n, and hence fyng converges.

The same conclusion holds if y2nþ1 ¼ y2nþ2 for some n.

For part (b), assume that y2n–y2nþ1 for all n. Then (2.1) implies that

dðyn; ynþ1Þ 6 kndðy0; y1Þ:

For any m;n 2 N with m > n it follows that
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