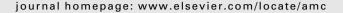
FISFVIER

Contents lists available at ScienceDirect

### **Applied Mathematics and Computation**





## Certain subclasses of multivalent analytic functions defined by multiplier transforms

Zhi-Gang Wang a,\*, Neng Xu b, Mugur Acu c

#### ARTICLE INFO

# Keywords: Analytic functions Multivalent functions Differential subordination Superordination Hadamard product (or convolution) Multiplier transforms

#### ABSTRACT

By making use of the principle of subordination between analytic functions and a family of multiplier transforms, we introduce and investigate some new subclasses of multivalent analytic functions. Such results as inclusion relationships, subordination and superordination properties, integral-preserving properties, argument estimates and convolution properties are proved.

Crown Copyright © 2010 Published by Elsevier Inc. All rights reserved.

#### 1. Introduction

Let  $A_p(n)$  denote the class of functions of the form

$$f(z) = z^{p} + \sum_{k=n}^{\infty} a_{p+k} z^{p+k} \quad (p, \ n \in \mathbb{N} := \{1, 2, 3, \ldots\}), \tag{1.1}$$

which are analytic in the open unit disk

$$\mathbb{U} := \{z : z \in \mathbb{C} \text{ and } |z| < 1\}.$$

Let  $\mathcal{H}[a, n]$  be the class of analytic functions of the form

$$h(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \quad (z \in \mathbb{U}).$$

Let  $f, g \in A_p(n)$ , where f is given by (1.1) and g is defined by

$$g(z)=z^p+\sum_{i=1}^\infty b_{p+k}z^{p+k}.$$

Then the Hadamard product (or convolution) f \* g of the functions f and g is defined by

$$(f*g)(z) := z^p + \sum_{k=n}^{\infty} a_{p+k} b_{p+k} z^{p+k} =: (g*f)(z).$$

Let  $\mathcal{P}$  denote the class of functions of the form

$$p(z) = 1 + \sum_{k=n}^{\infty} p_k z^k \quad (n \in \mathbb{N}),$$

E-mail addresses: zhigangwang@foxmail.com (Z.-G. Wang), xun@cslg.edu.cn (N. Xu), acu-mugur@yahoo.com (M. Acu).

<sup>&</sup>lt;sup>a</sup> Department of Mathematics and Computing Science, Hengyang Normal University, Hengyang 421008, Hunan, PR China

<sup>&</sup>lt;sup>b</sup> Department of Mathematics, Changshu Institute of Science and Technology, Changshu 215500, Jiangsu, PR China

<sup>&</sup>lt;sup>c</sup> Department of Mathematics, "Lucian Blaga" University of Sibiu, 5–7 Ion Ratiu Street, Sibiu 550012, Romania

<sup>\*</sup> Corresponding author.

which are analytic and convex in  $\ensuremath{\mathbb{U}}$  and satisfy the condition

$$\Re(p(z)) > 0 \quad (z \in \mathbb{U}).$$

For two functions f and g, analytic in  $\mathbb{U}$ , we say that the function f is subordinate to g in  $\mathbb{U}$ , and write

$$f(z) \prec g(z) \quad (z \in \mathbb{U}),$$

if there exists a Schwarz function  $\omega$ , which is analytic in  $\mathbb{U}$  with

$$\omega(0) = 0$$
 and  $|\omega(z)| < 1$   $(z \in \mathbb{U})$ 

such that

$$f(z) = g(\omega(z)) \quad (z \in \mathbb{U}).$$

Indeed, it is known that

$$f(z) \prec g(z)$$
  $(z \in \mathbb{U}) \rightarrow f(0) = g(0)$  and  $f(\mathbb{U}) \subset g(\mathbb{U})$ .

Furthermore, if the function g is univalent in  $\mathbb{U}$ , then we have the following equivalence:

$$f(z) \prec g(z) \quad (z \in \mathbb{U}) \leftrightarrow f(0) = g(0) \quad \text{and} \quad f(\mathbb{U}) \subset g(\mathbb{U}).$$

In a recent paper, Cataş [3] defined a class of multiplier transforms  $\mathcal{I}_{p,n}(m,\lambda,l)$  on  $\mathcal{A}_p(n)$  by the following infinite series:

$$\mathcal{I}_{p,n}(m,\lambda,l)f(z) := z^p + \sum_{k=n}^{\infty} \left(\frac{p+\lambda k+l}{p+l}\right)^m a_{p+k} z^{p+k}$$

$$(z \in \mathbb{U}; \ p, \ n \in \mathbb{N}; \ m \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}; \ \lambda, \ l \ge 0).$$

$$(1.2)$$

It is easily verified from (1.2) that

$$\lambda z (\mathcal{I}_{p,n}(m,\lambda,l)f)'(z) = (p+l)\mathcal{I}_{p,n}(m+1,\lambda,l)f(z) - [(1-\lambda)+l]\mathcal{I}_{p,n}(m,\lambda,l)f(z). \tag{1.3}$$

It should be remarked that the class of multiplier transforms  $\mathcal{I}_{p,n}(m,\lambda,l)$  is a generalization of several other linear operators considered in earlier investigations (see [2,4,6–8,14]).

More recently, Acu et al. [1] discussed the radius of starlikeness of a subclass of p-valent functions defined by  $\mathcal{I}_{p,n}(m,\lambda,l)$ , Cataş et al. [5] obtained some subordination results associated with  $\mathcal{I}_{p,n}(m,\lambda,l)$ . In this paper, by making use of the multiplier transforms  $\mathcal{I}_{p,n}(m,\lambda,l)$  and the above-mentioned principle of subordination between analytic functions, we introduce and investigate the following subclasses of the class  $\mathcal{A}_p(n)$  of p-valent analytic functions.

**Definition 1.** A function  $f \in \mathcal{A}_p(n)$  is said to be in the class  $\mathcal{R}_{p,n}(m,\lambda,l;\alpha;\phi)$  if it satisfies the subordination condition

$$\frac{1}{p-\alpha} \left( \frac{z(\mathcal{I}_{p,n}(m,\lambda,l)f)'(z)}{\mathcal{I}_{p,n}(m,\lambda,l)f(z)} - \alpha \right) \prec \phi(z) \quad (z \in \mathbb{U}; \ \phi \in \mathcal{P}), \tag{1.4}$$

where (and throughout this paper unless otherwise mentioned) the parameters  $\alpha$ , p, n, m,  $\lambda$  and l are constrained as follows:

$$0 \le \alpha < p; \ p, \ n \in \mathbb{N}; \ m \in \mathbb{N}_0 \quad \text{and} \quad \lambda, \ l \ge 0. \tag{1.5}$$

For convenience, we write

$$\mathcal{R}_{p,n}\!\left(m,\lambda,l;\alpha;\frac{1+Az}{1+Bz}\right)=:\mathcal{R}_{p,n}\!\left(m,\lambda,l;\alpha;A,B\right)\quad (-1\!\leqq\!B< A\!\leqq\!1).$$

**Definition 2.** A function  $f \in \mathcal{A}_p(n)$  is said to be in the class  $\mathcal{K}_{p,n}(m,\lambda,l;\beta;\phi)$  if it satisfies the subordination condition

$$(1-\beta)\frac{\mathcal{I}_{p,n}(m,\lambda,l)f(z)}{z^p} + \beta\frac{\mathcal{I}_{p,n}(m+1,\lambda,l)f(z)}{z^p} \prec \phi(z) \quad (z \in \mathbb{U}; \ \beta \in \mathbb{C}; \ \phi \in \mathcal{P}). \tag{1.6}$$

In the present paper, we aim at proving such results as inclusion relationships, subordination and superordination properties, integral-preserving properties, argument estimates and convolution properties for the classes  $\mathcal{R}_{p,n}(m,\lambda,l;\;\alpha;\;\phi)$  and  $\mathcal{K}_{p,n}(m,\lambda,l;\;\beta;\;\phi)$ .

#### 2. Preliminary results

In order to establish our main results, we need the following lemmas.

**Lemma 1** (See [9]). Let  $\vartheta$ ,  $\gamma \in \mathbb{C}$ . Suppose that  $\varphi$  is convex and univalent in  $\mathbb{U}$  with

$$\varphi(0) = 1$$
 and  $\Re(\vartheta \varphi(z) + \gamma) > 0$   $(z \in \mathbb{U}).$ 

#### Download English Version:

# https://daneshyari.com/en/article/4632504

Download Persian Version:

https://daneshyari.com/article/4632504

Daneshyari.com