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Carleman shift

0. Introduction

The classical theory of singular integral equations (SIE) is rather complete (see [9,10,19,20,22,24], and others). The theory
of approximation methods and its applications for the solution of linear and nonlinear singular integral equations (LSIE) and
(NSIE) has been developed by many authors [3,6,11,12,17]. There is a literature on the successful development of the non-
linear singular integral equations with shift (NSIES) [1,4,5,15,18,21]. The Noether theory of singular integral operators with
shift (SIOS) is developed for a closed and open contour ([2,10,13,14,16,18] and others). The theory of singular integral equa-
tions with shift (SIES) is an important part of integral equations because of its recent applications in many fields of physics
and engineering [8,14,16].

In this paper the method of Kantorovich majorants has been applied to the following NSIES:
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under the following conditions
at) = vy, (t,uo(t)) — c(t),  b(t) =d(t) =y ((t), uo(ax(t))), (0.2)

for initial value uy, in the generalized Hélder space H,, (L), where L is a simple smooth closed Lyapunov contour, dividing the
complex plane into two domains D" (the interior domain) and D~ (the exterior domain), D = D* UD~, and the homeomor-
phism « : L — L is the preserving orientation and satisfies the Carleman condition:

a(a(t)) = oa(t) =t; tel, (0.3)
and the derivative o/(t) # O satisfies the usual Hélder condition.

The functions a(t), b(t),c(t) and d(t) belong to the generalized Holder space H, (L). Moreover, the functions v, (t, u(t))
and v, (t,u(t)) have partial derivatives up to (m — 1)-order, and satisfy the following conditions:
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for |u; — ug| < r,i=1,2,where ¢, ¢, € ®,i+j=11=0,1,...,m—1and ¢(r), di(r) are positive increasing functions the func-

tions y (t,u(t)) and y, (t, u(t)) belong to the space Hyn(L) for any u € Hym(L), [23].
The Eq. (0.1) under condition (0.2) has been studied by modified Newton-Kantorovich method in [5].

1. Formulation of the problem

Let f : B(up,R) € X — Y is a nonlinear operator defined on the closure of a ball B(ug,R) = {u: u € X, |ju — ug|| < R} in a Ba-
nach space X into a Banach space Y. We give new conditions to ensure the convergence of Newton-Kantorovich approxima-
tions toward a solution of f(u) = 0, under the hypothesis that fis Frechet differentiable in B(uo, R), and that its derivative f’
satisfies the local Lipschitz condition

If'(ur) —f'(w2)|] < k(r)|jus — uz||, ur,up € B(up,1); 0<r<R, (1.1)
where k(r) is non-decreasing function on the interval [0, R] and
k(r) = sup {M DUy, Uy € B(ug,r);uy # uz}. (1.2)
[ — o]
Define a scalar function ¢ : [0,R] — [0, 00) by
or)=¢e+ ,u/ ot)dt —r, (1.3)
0
where the function
() = / k(t)dt, (1.4)
0
and
&= |lf"(uo) 'fuo)ll, p=If (o). (1.5)

Theorem 1.1 [25] Suppose that the function ¢ has a unique positive root r. in [0, R] and ¢(R) < 0. Then the equation f(u) = 0 has
a unique solution u, in B(ug, R) and the Newton-Kantorovich approximations

Uy = Uy —f'(Un1) " f(Unr), MEN, (1.6)
are defined for all n € N, belong to B(uo,r.) and converge to u.. Moreover, the following estimate holds
Hun+1 - un“ < Tny1 — T, Hux - un” g I, —Tn, (17)

where the sequence (ry),.y increasing and convergent to r,, is defined by the recurrence formula

$(rn)
el neN. (1.8)

Our aim is to investigate sufficient conditions, which ensure that the NSIES (0.1) verifies the hypotheses of Theorem 1.1.

ro=0, Tny=r—

2. Some basic results

Definition 2.1 ([12,19]). We denote by c(L) the space of all continuous functions u(t) defined on L with the norm:

Ity = max (o). 1)

Definition 2.2 ([10,23]). For the continuous function u(t) defined on a closed interval [a, b], the function w7 (5) = w™(u, d) is
called the modulus of continuity of order m of the function u(t), and defined on a closed interval [0,24] as follows

wy(9) = sup |4y (u;x)], (2.2)

0<h<5;6>0
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