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In this short letter, new exact solutions including kink solutions, soliton-like solutions and
periodic form solutions for a combined version of the potential KdV equation and the
Schwarzian KdV equation are obtained using the generalized Riccati equation mapping
method.
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1. Introduction

In recent years, nonlinear evolution equations played a major role in various fields, such as fluid mechanics, plasma phys-
ics, optical fibers, solid state physics, chemical kinematic, chemical physics and geochemistry. Concepts like solitons, kinks,
breathers, cusps and compactons are now being thoroughly investigated in the scientific literature. During the past decades,
many powerful methods to construct exact solutions of nonlinear evolution equations have been established and developed
such as the inverse scattering transform [1], the Hirota’ s bilinear operators [2], the tanh-function expansion and the Jacobi
elliptic function expansion [3,4], the homogeneous balance method [5], the auxiliary function method [6,7], the exp-function
expansion method [8] and so on.

In this letter, by using the generalized Riccati equation mapping method [9], we obtain some new exact solutions includ-
ing kink solutions, soliton-like solutions and periodic form solutions for a combined version of the potential KdV equation
and the Schwarzian KdV equation.

2. Abundant solutions by using the Riccati equation mapping method

In this section, we introduce a generalized Riccati equation mapping method to construct the exact solutions of a com-
bined version of the potential KdV equation and the Schwarzian KdV equation [10].

The combined version of the potential KdV equation and the Schwarzian KdV equation is given as the follows:
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SðuÞ ¼ uxxx

ux
� 3

2
u2

xx

u2
x
: ð2:2Þ

0096-3003/$ - see front matter � 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2009.09.031

E-mail address: lizitian88@163.com

Applied Mathematics and Computation 215 (2009) 2886–2890

Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier .com/ locate /amc

http://dx.doi.org/10.1016/j.amc.2009.09.031
mailto:lizitian88@163.com
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc


We now consider Eq. (2.1) by applying the generalized Riccati equation mapping method. By using the wave variable
n ¼ kðxþxtÞ, (2.1) is converted into an ODE for u ¼ uðnÞ
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k2u0u000 � 3k2ðu00Þ2 ¼ 0: ð2:3Þ

Introduce a new independent variable / as follows:

uðnÞ ¼
Xm

i¼0

ai/
i; ð2:4Þ

where ai is constants to be determined later, / expresses the solution of the following generalized Raccati equation:

/0ðnÞ ¼ r þ p/ðnÞ þ q/2ðnÞ; ð2:5Þ

r, p and q are all real constants that would be determined by the boundary-initial value conditions for a specific problem.
By balancing the highest-order linear term with the nonlinear term in (2.3), we have m ¼ 1. Then, we write (2.4) in the
form

uðnÞ ¼ a0 þ a1/; a1 – 0: ð2:6Þ

Substituting (2.6) along with (2.5) into (2.3) yields a equation for /, setting the coefficients of each power of /i to zero
yields
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Solving these algebraic equations, we obtain

a1 ¼ �2kq; x ¼ �1
2

k2ðp2 � 4qrÞ: ð2:7Þ

Based on the solutions of (2.5), selecting different values of r, p and q we obtain abundant new types solutions for (2.1).
Type (I): Taking p, q and r satisfies pq – 0 ðor qr – 0Þ and p2 � 4qr > 0; a0 ¼ �kp, the kink solutions and the soliton-like

solutions of (2.1) are recovered.

(i) The kink solutions:
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