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ARTICLE INFO ABSTRACT

Keywords: This paper provides the observer-based finite-time control problem of time-delayed
Ma_r1<0V_jumP systems Markov jump systems that possess randomly jumping parameters. The transition of the
Finite-time H,, controller jumping parameters is governed by a finite-state Markov process. The observer-based
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finite-time H. controller via state feedback is proposed to guarantee the stochastic
finite-time boundedness and stochastic finite-time stabilization of the resulting closed-
loop system for all admissible disturbances and unknown time-delays. Based on stochastic
finite-time stability analysis, sufficient conditions that ensure stochastic robust control
performance of time-delay jump systems are derived. The control criterion is formulated
in the form of linear matrix inequalities and the designed finite-time stabilization control-
ler is described as an optimization one. The presented results are extended to time-varying
delayed MJSs. Simulation results illustrate the effectiveness of the developed approaches.
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1. Introduction

A lot of dynamical systems are highly relevant to processes whose parameters are subject to random abrupt changes due
to, for example, subsystem switching, system noises, sudden environment changes, failures occurred in components or inter-
connections, etc. Markov jump systems (M]Ss) are special class of hybrid systems with two components which are the mode
and the state, may be employed to model the above system phenomenon. In MJSs, the dynamics of the jump modes and con-
tinuous states are, respectively, modeled by finite-state Markov chains [9,28] and differential equations. Since the celebrated
work of Krasovskii and Lidskii on quadratic control [18] in the early 1960s, M]Ss regains increasing interest and there has
been a dramatic progress in MJSs control theory. In practice, the applications of MJSs are comprehensive, for instance, eco-
nomic systems [7], communication systems [4], electrical power systems [5], robot manipulator system [22] and circuit sys-
tems [14], etc. In the past decades, the characterization of stochastic Lyapunov stability and control issues of MJSs has been
widely investigated, and the existing results cover a large variety of problems such as stochastic Lyapunov stability
[12,16,21-23], stochastic controllability [5,18,24,25], robust filtering [13,15,25], etc. It is worth noticing that Rami and
Ghaoui [23] started a new and prolific trend in the area of using linear matrix inequalities (LMlIs) techniques [6]. But to
the best of our knowledge, the stochastic finite-time stability and control problems for stochastic MJSs have not been inten-
sively studied.

It has been recognized that time-delays are inherent features of many various practical systems, such as chemical
engineering process, pneumatic systems with long transmission lines, neural network, inferred grinding model, etc. The exis-
tence of time-delays frequently causes instability in dynamic systems and usually leads to unsatisfactory performances.
Therefore, the problems of stability analysis and designing controllers for time-delay systems have been of considerable
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interest and in particular robust Lyapunov stability problem of linear systems has received much consideration. As we all
know, Lyapunov stability is used to deal with the asymptotic pattern of system trajectories, thus the steady-state behaviors
of control systems over an infinite-time interval are paid more attention to. However, the main attention in many practical
applications is the behavior of the dynamical systems over a fixed finite-time interval [10,11], for example, large values of
the state are not acceptable in the presence of saturations. Therefore, we need to check the unacceptable values that the sys-
tem state does not exceed a certain threshold during a fixed finite-time interval by giving some initial conditions. The con-
cept of finite-time stability referring to these transient performances of control dynamics dates back to the Sixties, when it
was introduced in the control literature [8]. Then, some attempts on finite-time stability can be found in [26] by using Lyapu-
nov functional approach. Recently, with the aid of LMIs techniques, more concepts of finite-time stability have been
proposed for linear continuous-time or discrete-time control system, such as finite-time boundedness (FTB) [3,20,27], fi-
nite-time stabilization via feedback control [2,16,20,27] and finite-time control [1,3,13,16,20,27]. In above-mentioned pa-
pers, the controlled dynamics considered are common linear systems, then the controllers are designed under the case
that the total states of systems can be obtained. In actually fact, the states of system are not usually measurable in many
real-world systems and these motivate us to research observer-based stochastic finite-time controller design problem of this
topic.

In this paper, we discuss the observer-based stochastic finite-time analysis and synthesis problems of time-delay M]Ss
with norm bounded external disturbance. The observer-based finite-time H., controller via state feedback is provided to
guarantee the stochastic finite-time boundedness and stochastic finite-time stabilization of the resulting closed-loop system
for all admissible unknown time-delays. By selecting appropriate Lyapunov-Krasovskii functions, it gives the sufficient con-
ditions of the control criterion which can be tackled in the form of LMIs. And the presented results are then extended to time-
varying delayed M]Ss. At last, two numerical examples are provided to illustrate the proposed results.

In the sequel, the following notation will be used: The symbols R" and R™*™ stand for an n-dimensional Euclidean space
and the set of all n x m real matrices, respectively, AT and A~! denote the matrix transpose and matrix inverse, diag{A B}
represents the block-diagonal matrix of A and B, ||| denotes the Euclidean norm of vectors, E{e} denotes the mathematics
statistical expectation of the stochastic process or vector, L} [0, +oc) is the space of n-dimensional square integrable function
vector over [0,+o0c), P > 0 stands for a positive-definite matrix, I is the unit matrix with appropriate dimensions, 0 is the zero
matrix with appropriate dimensions, * means the symmetric terms in a symmetric matrix.

2. Problem formulation

Given a probability space (€2, F, P) where  is the sample space, F is the algebra of events and P is the probability measure
defined on F. Let the random form process {r,t > 0} be a continuous-time discrete-state homogeneous Markov stochastic
process taking values on a finite set M = {1,2,...,N} with transition rate matrix II = {rn;}, i,j € M and having the additional
property P{{ro=1i})> 0, Vi € M. Thus, we can define the following transition probability from mode i at time t to mode j
at time ¢ + At as

AL + 0(A), ij,

1
1+ myAt + o(At), i=], M)

Pj =P At =jlri=i} = {

with transition probability rates n; > 0 for i,j € M, i # j and Z] 1j#T = —Ti where At >0 and limar00(At)/At — 0.
Consider the following time-delay M]Ss in the probability space (€,F,P):
X(t) = A(ro)x(t) + Ag(ro)x(t — 1(t)) + B(rou(t) + By(rod(t),
z(t) = C(ro)x(t) + Ca(ro)x(t — (1)) + D(rou(t) + Da(ro)d(t),
Y(t) = G (ro)x(t) + Cya(ro)X(t — (1)),
xX(t)=nq(),te[-T O,r=ry t=0,

(2)

where x(t) € R" is the state, z(t) € R' is the controlled output, ¥(t) € R? is the measured output, u(t) € R™ is the controlled in-
put, d(t) e [5[0 + o0) is the external disturbances, (t) € L[~ 0] is a continuous vector-valued initial function, ry is the
initial mode, A(r), Aa(r).B(1;), By(1:),C(1:), Cu(ry), D(1¢), Dy(1:), (1), Cya(r,) are known mode-dependent constant matrices
with appropriate dimensions. 7(t) is a kind of positive time-varying differentiable bounded delays [17,19] which can be de-
scribed as

0<T(t)<T<oo, ()<l (3)

For convenience, we denote A(ry), Aq(r,), B(rc), Bu(re), C(r), Ca(re), D(1), Dy(1), C(10), Cya(1t) as Ay, Agi, Bi, Byi, G, Cyi, Dy, Dy, Cy,
Cyai-

Assumption 2.1. The external disturbance d(t) is varying and satisfies the following constraint condition:

/ "ddndr<d d>0 )
0
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