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a b s t r a c t

Brander and Taylor presented a simple and basic framework for discussing the problem on
human population and renewable natural resources in the year 1998, and D’Alessandro
recently extended this work mainly by introducing a nonlinear term into the model, if see-
ing from the mathematical point of view. A limit cycle in this new model was reported by
the author via numerically simulated drawing. In this paper, we show that this limit cycle
actually is a bifurcating limit cycle of a one-parameter Hopf bifurcation.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Brander and Taylor [1] presented a simple and basic framework for discussing the problem on human population and
renewable natural resources, relative to the Lotka-Volterra predator–prey model with man as the predator and the resources
as the prey, in the year 1998. The model follows Malthusian population dynamics [2] and Ricardian production structure [3],
and so is called a Ricardo-Malthus model. The original model is a dynamical system as follows:

_S ¼ ½rð1� S=KÞ � abL�S;
_L ¼ ðb� dþ /abSÞL;

(

where S is the resource stock, L is the labor force (or the population), r is the intrinsic growth rate (or the regeneration rate), K
is the carrying capacity of resource, a is the technological parameter of resource harvesting, b is the share of individual con-
sumption on the resource good, b and d are the birth and death rates of population respectively, and / is the fertility param-
eter of population. This model shows that the over-exploitation of natural resources causes a sharp reduction in the human
population. Several other authors have developed this model by taking into account additional aspects such as institutions,
property rights, and technical progress (see [4–13]).

D’Alessandro [14] recently extended Brander and Taylor’s work to account for the heterogeneity of historical human
development paths. In this extension, there are a renewable resource, forest, and an inexhaustible resource, land, and the
production, at same time, is extended to be having wood and corn. The extended model is as follows:

_S ¼ ½qðS=K � 1Þð1� S=KÞ � abL�S;
_L ¼ c½kð1� bÞdLd�1 þ �/abS� �r�L;

(

where S is the stock of forest, L is the labor force (or the population), K and K are the lower threshold quantity and the
carrying capacity of forest, a is the technological parameter of resource harvesting, b is the parameter of preferences on con-
sumption, c is the caloric unit of corn, k is the index of land fertility, d is the technological parameter of land, / and r are the
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wood and per capita natural caloric levels expressed in terms of mass units of corn respectively, and q is the intrinsic regen-
eration rate of forest.

The new model has more complex dynamics than Brander and Taylor’s. Accordingly, the author introduces a reasonable
nonlinear term k(1 � b)dLd�1 as well as increasing difficulty in mathematics into the model. In contrast to Brander and Tay-
lor’s model which has no Hopf bifurcation as well as no limit cycle, a limit cycle found via numerically simulated drawing
was reported in this new model, but without strict mathematical proof. As a part of the work of the Ricardo-Malthus model,
we focus on the Hopf bifurcation and do not intend to study other things in this paper. Using Hopf bifurcation theorem and
the normal form theory, we are to show that this reported limit cycle actually is a bifurcating limit cycle of a one-parameter
Hopf bifurcation of the model.

The rest of this paper is organized as follows. Section 2 presents the Hopf bifurcation theorem. Section 3 shows the exis-
tence of Hopf bifurcation of the model. Section 4 gives numerical examples. And Section 5 concludes.

2. The Hopf bifurcation theorem

We first introduce the Hopf bifurcation theorem.

Theorem 1 (Hopf [15]). Suppose that the system _x ¼ flðxÞ; x ¼ ðx; y; . . . ÞT 2 Rn; l 2 R has an equilibrium (x0,l0) at which the
following properties are satisfied:

(H1) Dxfl0
ðx0Þ has a simple pair of pure imaginary eigenvalues and no other eigenvalues with zero real parts. Then (H1) implies

that there is a smooth curve of equilibria (x(l),l)) with x(l0) = x0. The eigenvalues kðlÞ; kðlÞ of Dxfl0
ðxðlÞÞ which are

imaginary at l = l0 vary smoothly with l. If, moreover,
(H2)

d ¼ d
dl

RekðlÞ
����
l¼l0

– 0;

then there is a unique three dimensional center manifold passing through (x0,l0) in Rn � R and a smooth system of coordinates
(preserving the planes l = const.) for which the Taylor expansion of degree 3 on the center manifold is given by

_x ¼ ðdlþ aðx2 þ y2ÞÞxþ ðxþ clþ bðx2 þ y2ÞÞy;
_y ¼ ðxþ clþ bðx2 þ y2Þxþ ðdlþ aðx2 þ y2ÞÞy:

If a – 0, there is a surface of periodic solutions in the center manifold which has quadratic tangency with eigenspace of
kðl0Þ; kðl0Þ agreeing to second order with the paraboloid l = �(a/d)(x2 + y2). If a < 0, then these periodic solutions are stable
limit cycles, while if a > 0, the periodic solutions are repelling.

3. Existence of Hopf bifurcations in D’Alessandro’s model

For convenience, we change some of the notations in the original model and use our own ones. The model is then rewrit-
ten as follows:

_x ¼ ½qðx=k1 � 1Þð1� x=k2Þ � aby�x;
_y ¼ c½kð1� bÞdyd�1 þ k3abx� k4�y;

(
ð1Þ

where a > 0, b 2 (0,1), c > 0, k > 0, d 2 (0,1), q > 0, k1 > 0, k2 > 0, k1 < k2, k3 > 0, and k4 > 0. Letting _x ¼ 0 and _y ¼ 0 and ignoring
the equilibria on the axes, we have

qðx=k1 � 1Þð1� x=k2Þ � aby ¼ 0; ð2Þ
kð1� bÞdyd�1 þ k3abx� k4 ¼ 0: ð3Þ

The internal equilibria in the first quadrant are the solutions of the system (2), (3), denoted by Q*(x*,y*). The Jacobian of sys-
tem (1) evaluated at Q* is

J ¼
� 3q

k1k2
x�2 þ 2 ðk1þk2Þq

k1k2
x� � q� aby� �abx�

ck3aby� c½kdð1� bÞdy�ðd�1Þ þ k3abx� � k4�

 !
: ð4Þ

Thus, the trace of J is

TR ¼ trace J ¼ � 3q
k1k2

x�2 þ 2
ðk1 þ k2Þq

k1k2
x� � q� aby� þ c½kdð1� bÞdy�ðd�1Þ þ k3abx� � k4�; ð5Þ
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