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a b s t r a c t

A fast and simple iterative method with cubic convergent is proposed for the determina-
tion of the real and complex roots of any function F(x) = 0. The idea is based upon passing
a defined function G(x) tangent to F(x) at an arbitrary starting point. Choosing G(x) in the
form of xk or kx, where k is obtained for the best correlation with the function F(x), gives
an added freedom, which in contrast to all existing methods, accelerates the convergence.
Also, this new method can find complex roots just by a real initial guess. This is in contrast
to many other methods like the famous Newton method that needs complex initial guesses
for finding complex roots. The proposed method is compared to some new and famous
methods like Newton method and a modern solver that is fsolve command in MATLAB.
The results show the effectiveness and robustness of this new method as compared to
other methods.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Solving for the roots of equations such as F(x) = 0 is an old and known problem. The most famous and commonly used
method is Newton method defined by:

xnþ1 ¼ xn �
FðxnÞ
F 0ðxnÞ

n P 0: ð1Þ

Other familiar methods are Bisection, Secant, False position, Brent, Halley, Schroder, Householder, Ridders, Muller, and Lagu-
err etc. which can be found in the literature. Also, in the recent years, many methods have been developed for solving non-
linear equations. These methods were developed using Taylor interpolating polynomials [1,2], quadrature formulas [3,4],
decomposition [5,6], homotopy perturbation method [7,8], and other techniques [9,10]. Also, many Newton-type iterative
methods have been developed for finding roots of nonlinear equations. From one point of view, these methods can be cat-
egorized as one-step [11,12], two-step [13,14] and three-step [15] iterative methods. Each of these methods has a different
rate of convergence; second order [16,17], third order [11,18] and more than third order [15,19].

Most of these methods need a proper first guess of the root. Some of them calculate only the real roots and complex mode
of computation is not possible, or if it is possible the initial guess must be complex (such as Newton’s method). The proposed
method introduced here does not have those weaknesses and can find both the real and the complex roots of any nonlinear
function even if the initial guess was a real number.

Recently, the authors have developed a similar method for computing complex roots of systems of nonlinear equations
[20]. We show here that the modified version of that method can effectively be used for finding the roots of a single non-
linear equation.
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2. The proposed method

Let the nonlinear function be represented by F(x). Therefore, the nonlinear equation can be written as:

FðxÞ ¼ 0 ð2Þ

Using the Taylor series expansion, we express the function in terms of an arbitrary function GðxÞ which will be defined later.

FðxÞ ¼ FðxnÞ þ
a1ðxnÞ

1!
ðGðxÞ � GðxnÞÞ þ

a2ðxnÞ
2!
ðGðxÞ � GðxnÞÞ2 þ . . . ð3Þ

Where

a1ðxnÞ ¼
F 0ðxnÞ
G0ðxnÞ

ð4Þ

aiþ1ðxnÞ ¼
a0iðxnÞ
G0ðxnÞ

i ¼ 2;3;4; . . . ð5Þ

Therefore

FðxÞ ¼ FðxnÞ þ
F 0ðxnÞ
G0ðxnÞ

ðGðxÞ � GðxnÞÞ þ
F 00ðxnÞ
G02ðxnÞ

� F 0ðxnÞG00ðxÞ
G03ðxnÞ

 !
ðGðxÞ � GðxnÞÞ2 þ . . . ð6Þ

By considering the above equation we can approximate F(x) with:

FðxÞ � FðxnÞ þ
F 0ðxnÞ
G0ðxnÞ

ðGðxÞ � GðxnÞÞ ð7Þ

Let the right hand of Eq. (7) be represented by H(x):

HðxÞ ¼ FðxnÞ þ
F 0ðxnÞ
G0ðxnÞ

ðGðxÞ � GðxnÞÞ ð8Þ

In order for H(x) to be compatible with F(x) around x ¼ xn we must have:

HðxnÞ ¼ FðxnÞ ð9Þ
H0ðxnÞ ¼ F 0ðxnÞ ð10Þ
H00ðxnÞ ¼ F 00ðxnÞ ð11Þ

Conditions (9) and (10) are automatically satisfied. For condition (11) to be satisfied we must have:

F 00ðxnÞ
F 0ðxnÞ

¼ G00ðxnÞ
G0ðxnÞ

ð12Þ

Now by letting, F(x) = 0 from Eq. (7) we obtain:

xnþ1 ¼ G�1 GðxnÞ � G0ðxnÞ
FðxnÞ
F 0ðxnÞ

� �
ð13Þ

Note that Eq. (13) will be equal to the Newton formula, if we let G(x) = x.

3. Selection of G(x)

G(x) must be selected in a way that can approximate any function. In addition, according to Eq. (13) the inverse of func-
tion G(x) must be obtainable. Polynomials and exponential functions are usually appropriate for these purposes. So G(x) can
be expressed in one of the forms kx, xk or exp(kx).

If G(x) = xk from Eqs. (12) and (13) we have:

ð12Þ ! F 00ðxnÞ
F 0ðxnÞ

¼ ðk� 1ÞðkÞxk�2
n

ðkÞxk�1
n

) k ¼ 1þ xnF 00ðxnÞ
F 0ðxnÞ

ð13Þ ! xnþ1 ¼ xk
n � k

xk�1
n FðxnÞ
F 0ðxnÞ

� �1=k

) xnþ1 ¼ xn � 1� k
FðxnÞ

xnF 0ðxnÞ

� �1=k

n ¼ 0;1;2; . . .

ð14Þ

If G(x) = kx, then:
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