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a b s t r a c t

Four numerical methods with first- to fourth-order of accuracy have been developed for
the time integration of the Rosenau–Hyman K(2,2) equation. The error in the solution
and the invariants for the propagation of one-compacton, and the stability in collisions
among compactons have been studied using these methods. Numerically-induced radia-
tion has also been characterized by means of wavefront velocity and wavefront amplitude,
showing that the self-similarity of the radiation wavepackets observed in the numerical
results is a consequence of the time-stepping method. Among the four methods studied
in this paper, the best results in terms of accuracy, computational cost, and stability have
been obtained by means of using the second-order time integration method.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Compactons are traveling wave solutions with compact support resulting from the balance of both nonlinearity and non-
linear dispersion. These solutions were first found by Rosenau and Hyman [1] in the (focusing) K(2,2) compacton equation
given by:

ut � c0ux þ ðu2Þx þ ðu2Þxxx ¼ 0; ð1Þ

where u(x, t) is the wave amplitude, x is the spatial coordinate, t is time, c0 is a constant velocity, and the subindexes indicate
differentiation. There is a large number of nonlinear evolution equations with compacton solutions [2]. These solutions can
be calculated by several analytical means, like Adomian [3], bifurcation [4], transformation [5], and variational [6] methods.
However, for a general nonlinear evolution equation only numerical methods can be applied in order to determine its
solutions.

The numerical solution of nonlinear evolution equations with compactons, such Eq. (1), is a very challenging problem, but
the reasons behind these numerical difficulties have not been currently explained [7–9]. The most widely used numerical
methods in space are pseudospectral ones [1,10]. These methods require artificial dissipation (hyperviscosity) using high-
pass filters. Finite element methods based on cubic B-splines [7] and on piecewise polynomials discontinuous at the element
interfaces [11], second-order finite difference methods [12,13], high-order Padé methods [14,15], modified equation meth-
ods [16], and the method of lines with adaptive mesh refinement [9] have also been used with success. These methods also
require artificial dissipation to simulate interacting compactons. Finally, particle methods based on the dispersive-velocity
method were also developed [10].

Up to the authors’ knowledge, a comparison of time integration methods for equations with compacton solutions has not
been developed in the past. However, time-stepping is a very important factor in the numerical accuracy and the stability of
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numerical methods for nonlinear evolution equations [17,18]. Moreover, the effect of the time integration method in the
self-similarity of the numerically induced radiation observed in Ref. [19] also requires further attention. In this paper, four
numerical methods for time integration have been developed and compared when using a Petrov–Galerkin, finite element
method in space for the K(2,2) equation. Accuracy, invariant conservation, stability, numerically-induced radiation, and
robustness in compacton collisions have been studied as function of both compacton and method parameters.

The contents of this paper are as follows. Next section presents four numerical methods with first, second, third, and
fourth-order of accuracy in time, using the same spatial integration. Section 3 summarizes the analysis and practical behav-
ior of the methods considered in this paper; concretely, Section 3.1 study the propagation of one-compacton solutions, Sec-
tion 3.2 devotes to the numerically-induced radiation, and Section 3.3 addresses the comparison among Methods 1–4 for
problems with multiple colliding compactons. Finally, the last section is devoted to some conclusions.

2. Numerical methods

Let us consider the numerical solution of Eq. (1) by means of a Petrov–Galerkin approximation in space with periodic
boundary conditions, using C0 continuous piecewise linear interpolants and C2 continuous Schoenberg cubic B-splines,
respectively, as trial and test functions. For the nonlinear terms, the product approximation is applied [7]. The resulting weak
formulation for Eq. (1) is as follows: Find a function

Uðx; tÞ ¼
XN

i¼0

UiðtÞ/iðxÞ;

such that

hUt ;wji � c0hUx;wji þ hðU
2Þx;wji þ hðU

2Þx; ðwjÞxxi ¼ 0; ð2Þ

for all wj(x), j = 0,1, . . . ,N, where a uniform mesh is used, xi = x0 + iDx, Ui(t) is an approximation to the exact solution u(xi, t),
/i(x) are the usual piecewise linear hat functions associated with the node xi, i.e., /i(xj) = dij, where dij is the Kronecker delta),
wj(x) are cubic B-splines defined in a 4Dx interval, which are C2 continuous as required by Eq. (2), and, finally, the inner prod-
uct is

hf ; gi ¼
Z xN

x0

f ðxÞgðxÞdx:

The evaluation of the inner products in Eq. (2) yields the following system of ordinary differential equations

AðEÞ dUi

dt
� c0BðEÞUi þ BðEÞðUiÞ2 þ CðEÞðUiÞ2 ¼ 0; ð3Þ

for i = 0,1, . . . ,N, where Ui(t) � u(xi, t), E is the shift operator, i.e., EUi = Ui+1 and

AðEÞ ¼ E�2 þ 26E�1 þ 66þ 26E1 þ E2

120
;

BðEÞ ¼ �E�2 � 10E�1 þ 10 E1 þ E2

24Dx
;

CðEÞ ¼ �E�2 þ 2E�1 � 2 E1 þ E2

2Dx3 :

Method (3) is fourth-order accurate in space for regular enough solutions (u(x, t) 2 C7), since its truncation error terms are
given by:

TETfuðx; tÞg ¼ Dx4

240
@7u2

@x7 þ OðDx6Þ:

However, in solutions of the K(2,2) equation with multiple colliding compactons, shocks (or nonsmooth solutions) are devel-
oped reducing the effective order of accuracy and introducing numerical instabilities which may blow up the solution [7,14].
In order to avoid these instabilities, artificial viscosity must be introduced into the non-dissipative method given by Eq. (3).
Here, as in Refs. [7,12,14,19], the term l@4u/@x4, with l small enough, is introduced into the left-hand side of Eq. (1) and
numerically discretized by means of a second-order accurate five-point difference formula, given by:

DðEÞUi ¼
E�2 � 4E�1 þ 6� 4 E1 þ E2

Dx4 Ui: ð4Þ

The main goal of this paper is the comparison of the following four methods for the integration in time of Eq. (3), including
the term (4).

� Method 1. The application of the first-order, implicit Euler method to Eq. (3) yields

F. Rus, F.R. Villatoro / Applied Mathematics and Computation 217 (2010) 2788–2797 2789



Download English Version:

https://daneshyari.com/en/article/4632698

Download Persian Version:

https://daneshyari.com/article/4632698

Daneshyari.com

https://daneshyari.com/en/article/4632698
https://daneshyari.com/article/4632698
https://daneshyari.com

