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a b s t r a c t

In [J.-M. Chang, J.-S. Yang. Fault-tolerant cycle-embedding in alternating group graphs,
Appl. Math. Comput. 197 (2008) 760–767] the authors claim that every alternating group
graph AGn is (n � 4)-fault-tolerant edge 4-pancyclic. Which means that if the number of
faults jFj 6 n � 4, then every edge in AGn � F is contained in a cycle of length ‘, for every
4 6 ‘ 6 n!/2 � jFj. They also claim that AGn is (n � 3)-fault-tolerant vertex pancyclic. Which
means that if jFj 6 n � 3, then every vertex in AGn � F is contained in a cycle of length ‘, for
every 3 6 ‘ 6 n!/2 � jFj. Their proofs are not complete. They left a few important things
unexplained. In this paper we fulfill these gaps and present another proofs that AGn is
(n � 4)-fault-tolerant edge 4-pancyclic and (n � 3)-fault-tolerant vertex pancyclic.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

An alternating group graph AGn, n P 3, was introduced by Jwo et al. [3] as an interconnection network topology for com-
puting systems. The graph AGn has vertices labeled by even permutations of the set {1, . . . ,n}. Two vertices p and q are neigh-
bors if one of them is obtained from the other by rotating three symbols: the first, second and ith, for some i P 3. The graph
AG3 has three vertices 123, 231 and 312, every two are connected. AG4 is presented in Fig. 1. The n dimensional alternating
group graph AGn is a vertex symmetric and edge symmetric regular graph with n!/2 vertices, n! (n � 2)/2 edges, vertex
degree 2n � 4 and diameter b3n/2c � 3 (see [3]). By F we shall denote the set of faulty vertices. In [1] the authors claim that
AGn is (n � 4)-fault-tolerant edge 4-pancyclic. Which means that if the number of faults jFj 6 n � 4, then every edge in
AGn � F is contained in a cycle of length ‘, for every 4 6 ‘ 6 n!/2 � jFj. They also claim that AGn is (n � 3)-fault-tolerant vertex
pancyclic. Which means that if jFj 6 n � 3, then every vertex in AGn � F is contained in a cycle of length ‘, for every 3 6 ‘ 6 n!/
2 � jFj. Their proofs are not complete. They left a few important things unexplained:

(1) When proving, by induction, Theorem 1 (that AGn is (n � 4)-fault-tolerant edge 4-pancyclic) they decompose AGn into
subgraphs A1, . . . ,An. By induction hypothesis, shortest cycles are in these subgraphs. To obtain longer cycles they take
a cycle C already build and extend it into the next subgraphs using so called 4-cycle structures. If the cycle C is
contained in one subgraph Ai, then it is easy to see that C can be extended into a new subgraph Aj. But the authors
do not explain how to find such extending structure if C goes through more than one subgraph and there are only
few subgraphs unvisited.

(2) The arguments used in Case 2 of the proof of Theorem 1 do not work for n = 5. It is not possible to repartition AG5 with
jFj = 1 fault into subgraphs with 0 faults each.

(3) In the proof of Theorem 2 (that AGn is (n � 3)-fault-tolerant vertex pancyclic) in Case 1 it is not explained why sub-
graph Hk with fk = n � 4 faults is edge 4-pancyclic. Theorem 1 works if fk 6 (n � 1) � 4 = n � 5.
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In this paper we fulfill the gaps and present another proofs that AGn, n P 4, is (n � 4)-fault-tolerant edge 4-pancyclic and
(n � 3)-fault-tolerant vertex pancyclic. In [1] the authors showed that both these bounds are optimal.

2. Alternating group graph

An alternating group graph AGn, n P 3, has vertices labeled by even permutations of the set {1, . . . ,n}. The permutation
p = (p1, . . . ,pn) is even if it contains the even number of inversions. The inversion is a pair of numbers i, j, 1 6 i < j 6 n such
that pi > pj. For every i, 3 6 i 6 n, let gþi ¼ ð12iÞ be the permutation which rotates symbols in positions 1, 2 and i from right
to left; and g�i ¼ ð1i2Þ be the permutation which rotates these symbols from left to right. Two vertices p and q are connected
by an edge if and only if q ¼ pgþi or q ¼ pg�i , for some i P 3. For example in AG4 the vertex p = 1234 is connected with
pgþ3 ¼ 2314 and pg�3 ¼ 3124. Observe that if q ¼ pgþi then p ¼ qg�i . The n dimensional alternating group graph AGn is a vertex
symmetric and edge symmetric regular graph with n!/2 vertices, n! (n � 2)/2 edges, vertex degree 2n � 4 and diameter
b3n/2c � 3 (see [3]).

The graph AGn can be divided into subgraphs A1 , . . . , An, each Ai contains vertices with i on the last symbol. The subgraph
Ai is isomorphic with AGn�1. We can also divide AGn according to other position, say k, for some 3 6 k 6 n � 1. Then Ai con-
tains vertices with i on the kth position. Note that every two vertices u and v must differ in some symbol k P 3 and we can
decompose AGn in such a way that u and v are in different subgraphs and we can always assume that faulty vertices are not in
one subgraph (if there are more than one fault). On the other hand we can also divide AGn, n P 4, in such a way that two ends
of an edge are in one subgraph. This is because they differ only in one position i P 3.

Every vertex u 2 Ai is connected with exactly two vertices u 0 and u00 outside Ai (they are in two different subgraphs). We
will call the edges (u,u0) and (u,u00) external edges. Other edges we shall call internal. For each internal edge (u,v) 2 Ai with
u = (kj. . .i) and v = (jk0. . .i), there exist adjacent vertices s = (ik. . .j) and t = (k0i. . .j) both in Aj which form the 4-cycle (u,s, t,v).
We shall say that the edge (u,v) is of color j or that it is connected (by a 4-cycle) with the edge (s, t) in Aj. If a subgraph Ai is of
dimension 4 and is isomorphic to AG4 (see Fig. 1) then there are 4 colors, the edges of each color form a cycle of length 6. For
example, the cycle 1234, 4132, 1342, 2143, 1423, 3124 contains edges of color 1. If a subgraph Ai is of dimension 5, then it
can be divided (according to the 5th position) into 5 subgraphs Ai

1; Ai
2; Ai

3; Ai
4; Ai

5. Each of Ai
j is isomorphic to AG4, and con-

tains 4 colors (all colors except i and j) and edges of each color in Ai
j form a cycle of length 6. Similarly for higher dimensions.

AGn can be divided into n subgraphs A1 , . . . , An according to the last position. Each Ai can be divided into (n � 1) subgraphs Ai
1,

. . . , Ai
n�1 according to the last by one position and so on. But the color of the edge depends only on the first two symbols and is

the same in each subgraph. Moreover if an edge (u,v) is in the subgraph Ai
k and is connected with the edge (u0,v0) in Aj, then

the edge (u 0,v0) is in the subgraph Aj
k. There are (n � 2)! external edges joining two different subgraphs Ai and Aj. If x and y are

two vertices in Ai, then external edges (x,x0) and (y,y0) cannot meet in one vertex. Otherwise external edges from x0 = y0 would
go to one subgraph Ai, which is impossible. It is easy to see that we can choose external edges (x,x0) and (y,y0) in such a way
that x0 and y0 are in two different subgraphs. By F we shall denote the set of faulty vertices; fi = jAi \ Fj denotes the number of
faulty vertices in Ai and hi = jAi � Fj denotes the number of healthy vertices in Ai.

Lemma 1. For any two edges e, f 2 AG4, there exists a Hamiltonian cycle going through e and f.

Proof. By symmetry of AG4 we can assume that the edge e = (1234,2314). Consider three Hamiltonian cycles:

ð1234;2314;4213;3412; 4132;2431;3241;1342; 2143;1423;4321;3124Þ;
ð1234;2314;3124;4321; 2431;3241;2143;1423; 4213;3412;1342;4132Þ;
ð1234;2314;3412;4213; 2143;1423;3124;4321; 3241;1342;4132;2431Þ:

Fig. 1. AG4
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