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a b s t r a c t

In this paper a one-dimensional space fractional diffusion equation in a composite medium
consisting of two layers in contact is studied both analytically and numerically. Since
domain decomposition is the only approach available to solve this problem, we at first
investigate analytical and numerical strategies for a composite medium with the same
fractal dimension in each layer to ascertain which domain decomposition approach is
the most accurate and consistent with a global solution methodology, which is available
in this case. We utilise a matrix representation of the fractional-in-space operator to gen-
erate a system of linear ODEs with the matrix raised to the same fractional exponent. We
show that the global and domain decomposition numerical strategies for this problem pro-
duce simulation results that are in good agreement with their analytic counterparts and
conclude that the domain decomposition that imposes the Neumann condition at the inter-
face produces the most consistent results. Finally, we carry this finding to study the com-
posite problem with different fractal dimensions, where we again favourably compare
analytic and numerical solutions. The resulting method can be naturally extended to space
fractional diffusion in a composite medium consisting of more than two layers.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Recently a growing number of researchers have begun to utilise fractional calculus for some important applications in the
physical sciences and this interest has resulted in fractional differential equations being now widely accepted across many
fields of science and engineering [1,2,7,8,13,29,33–36,38,44]. Data in many fields of applications display multifractal scaling,
such as for example multifractional Brownian motion [6,4]. A variety of multiplicative cascades and iterated function
systems has been shown to generate multifractals [30,21,12,11,15]. Brownian motion in multifractal time and most Lévy
processes are also known to have multifractal paths [20,40]. Some illustrative examples of application of multifractal
analysis includes Refs. [14,31,41,3].

Markov processes associated with pseudodifferential operators with smooth symbols were studied by Bass [5], Jacob and
Leopold [19], Jacob [18], Komatsu [23] and Kikuchi and Negoro [22], for example. In particular, Bass [5] considered the gen-
erator �ð�DÞaðxÞ=2, where D is the Laplacian, for a function aðxÞ satisfying 0 < aðxÞ < 2 and called the generated process an
isotropic stable-like process. Komatsu [23] extended this class to generalized stable-like processes. Jacob and Leopold
[19] showed that there exists a Feller semigroup generated by the pseudodifferential operator whose symbol is the function
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�ð1þ jnj2ÞaðxÞ; 0 < inf aðxÞ 6 sup aðxÞ 6 2. Kikuchi and Negoro [22] extended the result to strongly elliptic pseudodifferential
operators with suitable variable order. Ruiz-Medina et al. [43] introduced a class of Markov processes whose transition prob-
ability densities are defined by multifractional pseudodifferential equations on compact domains with variable local dimen-
sion. The infinitesimal generators of these Markov processes are given by the trace of strongly elliptic pseudodifferential
operators of variable order on such domains. The results derived provide an extension of some existing classes of multifrac-
tional Markov processes. In particular, pseudostable processes are defined on domains with variable local dimension in this
framework.

Numerical analysis of multifractional processes is still at an early stage of development. A particular situation that we are
interested in concerns fractional diffusion in a composite medium consisting of several layers of different fractal dimensions.
This is an example of (multifractional) processes with variable singularity order. This paper aims to investigate appropriate
analytical and numerical strategies for such a situation.

Some numerical methods for solving the space fractional partial differential equations have been proposed recently. Liu et
al. [25,26] transformed the space fractional partial differential equation into a system of ordinary differential equations
(method of lines), which was then solved using backward differentiation formulae. Roop [42] investigated the numerical
approximation of the variational solution to the space fractional advection dispersion equation. Meerschaert et al. [32]
examined finite difference approximations for space fractional advection–dispersion flow equations. Shen et al. [45] pro-
posed an explicit finite difference approximation for the space fractional diffusion equation and gave a supporting error anal-
ysis. Liu et al. [28] discussed an approximation of the Lévy–Feller advection–dispersion process by a random walk and finite
difference method. Liu et al. [27] also discussed the stability and convergence of the difference methods for the space–time
fractional advection–diffusion equation.

In previous research by the authors [16,17] fractional-in-space diffusion equations have been studied both analytically
and numerically. Here, a new matrix transfer technique for solving the fraction-in-space diffusion equation was proposed,
which is based on using a standard discretisation of the fractional-in-space operator to generate a system of linear ODEs with
the matrix raised to the same fractional exponent. In this study we consider the diffusion process in a composite medium
consisting of several layers in contact with different fractional exponents. For easier exposition, the theory is illustrated
for two slabs 0 6 x < l; l 6 x 6 L with exponents a1 and a2, respectively. Specifically, an approximate solution is sought
for the following problem.

Problem 1. Solve the following initial-boundary value problem (BVP) in one-dimension:

@u1

@t
¼ �j1ð�r2Þ

a1
2 u1; 0 < x < l;

@u2

@t
¼ �j2ð�r2Þ

a2
2 u2; l < x < L

with the initial condition

u1ðx; 0Þ ¼ F1ðxÞ; 0 < x < l; u2ðx; 0Þ ¼ F2ðxÞ; l < x < L;

together with one of the following boundary conditions for t P 0:

(i) u1ð0; tÞ ¼ f ðtÞ; u2ðL; tÞ ¼ gðtÞ . . . ðBCÞ1;

(ii) @u1
@x ð0; tÞ ¼ f ðtÞ; @u2

@x ð0; tÞ ¼ gðtÞ . . . ðBCÞ2;

(iii) @u1
@x ð0; tÞ þ bu1ð0; tÞ ¼ f ðtÞ; @u2

@x ð0; tÞ þ bu2ð0; tÞ ¼ gðtÞ . . . ðBCÞ3

and the interfacial conditions (transmission coefficients) for t P 0:

(i) u1ðl; tÞ ¼ u2ðl; tÞ,
(ii) K1

@u1
@x ðl; tÞ ¼ K2

@u2
@x ðl; tÞ.

Here ji is the thermal diffusivity and Ki is the thermal conductivity, which can be different in each layer ið¼ 1;2Þ.
In [16,17], we discussed both the analytic and numerical solutions to space fractional diffusion equations (SFDE) of the

following type.

Problem 2. Solve the following initial-boundary value problem (BVP):

@u
@t
¼ �jð�r2Þ

a
2uþ g; on X; ð1:1Þ

with the boundary conditions (B.Cs):

BðuÞ ¼ f ; on @X;

and the initial condition (I.C):
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