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a b s t r a c t

In this paper, we generalize the nonstationary parallel multisplitting iterative method for
solving the symmetric positive definite linear systems. With several choices of variable
weighting matrices, the convergence properties of these generalized methods can be
improved. Finally, the numerical comparison of several nonstationary parallel multisplit-
ting methods are shown.
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1. Introduction

In order to get an iterative method to solve the large sparse system of linear equations

Ax ¼ b; A 2 Rn�n nonsingular and b 2 Rn; ð1:1Þ

on a multiprocessor system. O’Leary and White [20] first proposed parallel methods based on multisplitting technique of
matrices in 1985. Later, this technique was studied by many authors. By varying combinations of weighting matrices (see
[26]), introducing relaxation parameter(s) (see [1,2,12,24]), or constructing inner/outer iterations (see [17,21]), many
researchers have developed and generalized both method models and convergence theories of the matrix multisplitting iter-
ations for solving the large sparse linear system (1.1) on the SIMD (Single Instruction stream-Multiple Data stream) multi-
processor system. All these works make the matrix multisplitting technique become more bounteous and complete.

In an efficient implementation of a multisplitting method on a multiprocessor system, to avoid loss of time and efficiency
in processor utilization due to the unbalance of the workloads among processors of a multiprocessor system, the asynchro-
nous parallel iterative methods may be preferable to their synchronous alternations. Thus, by a technical combination of
both chaotic iteration idea of Chazan and Miranker [10] and matrix multisplitting technique of O’Leary and White [20],
Bru et al. [7] proposed two models of parallel multisplitting chaotic iterations for solving the large sparse linear system
(1.1), and their work empties into vitality and affords novel ways for studying the asynchronous parallel iterative methods
for solving large sparse linear systems in the sense of matrix multisplitting. By applying the accelerated overrelaxation (AOR)
technique of Hadjidimos [16] and considering the concrete characteristic of the MIMD (Multiple Instruction stream-Multiple
Data stream) multiprocessor system [6,25], further generalized and improved the aforementioned asynchronous iteration
models, and established a series of useful asynchronous parallel matrix multisplitting AOR iterative methods for solving
the linear system (1.1). In particular, the method that was given by Bai and Wang [5] had great generality, that is, it reduces
to the nonstationary multisplitting iterative method described in [9] when Ni ¼ 0; it becomes the stationary multisplitting
two-stage iterative method studied in [21] when sði; kÞ ¼ s ði ¼ 1;2; . . . ;a; k ¼ 1;2; . . .Þ; it recovers the multisplitting iterative
method proposed in [20] when sði; kÞ ¼ 1 ði ¼ 1;2; . . . ;a; k ¼ 1;2; . . .Þ and Ni ¼ 0. Moreover, it recovers the two-stage
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iterative method discussed in [3,13] when a ¼ 1. Besides above-mentioned works, we refer the readers to [1–26], and ref-
erences therein.

In this study, we focus on generalizing the weighting matrices Ei ði ¼ 1;2; . . . ;mÞ to EðkÞi ði ¼ 1;2; . . . ;m; k ¼ 0;1;2; . . . ; Þ for
the nonstationary multisplitting method presented in [9], which is also special case that method proposed by Bai and Wang
[5]. Thus, EðkÞi enable more approximate to the exact solution for k-step iteration. Similar to [5], we study these generalized
methods for solving the symmetric positive definite linear systems. With several choices of variable weighting matrices, in
particular, the nonnegative conditions are eliminated, the convergence properties of these generalized methods can be im-
proved. Numerical example is shown that the methods without nonnegative variable weighting matrices are much more
effective than the Algorithm 2 studied in [9].

The contents of this paper are arranged as follows. We first give some notations and preliminaries in Section 2, and then
some generalizations of the parallel multisplitting method are put forward in Section 3, the convergence theories of these
generalizations of the parallel multisplitting methods are established in Section 4. Finally, we give the comparison of several
parallel nonstationary multisplitting methods by the numerical example.

2. Preliminaries

Here are some essential notations and preliminaries. Rn�n is used to denote the n� n real matrix space, and Rn the n-
dimensional real vector space. AT denotes the transpose of A. Similarly the transpose of a vector x 2 Rn is denoted by xT .

A matrix A 2 Rn�n is called symmetric positive definite(or semidefinite), if it is symmetric and for all x 2 Rn; x–0, it holds
that xT Ax > 0ðxT Ax P 0Þ. The spectral radius of the matrix A is denoted by qðAÞ. A matrix H is called convergent if lim

k!1
Hk

exists.
A ¼ M � N is called a splitting of the matrix A if M 2 Rn�n is nonsingular; this splitting is called a convergent splitting if

qðM�1NÞ < 1; it is called a P-regular splitting of the symmetric positive definite matrix A if MT þ N is positive definite, see
[22].

The multisplitting method (see [20]) consists of having a collection of splittings

A ¼ Mi � Ni; i ¼ 1;2; . . . ;m; Mi nonsingular; ð2:1Þ

and Ei ði ¼ 1;2; . . . ;mÞ be m nonnegative diagonal weighting matrices such that
Pm

i¼1Ei ¼ I (the identity matrix), and the fol-
lowing Algorithm is performed.

Algorithm 2.1 (Multisplitting). Given the initial vector xð0Þ.

For k ¼ 0;1;2; . . . ; until convergence.
For i ¼ 1 to m

Miyi ¼ NixðkÞ þ b;
xðkþ1Þ ¼

Pm
i¼1Eiyi:

As it can be appreciated, Algorithm 2.1 corresponds to the following iteration

xðkþ1Þ ¼ TxðkÞ þ
Xm

i¼1

EiM
�1
i b; k ¼ 0;1;2; . . . ; ð2:2Þ

where T ¼
Pm

i¼1EiM
�1
i Ni is the iteration matrix.

Algorithm 2.2 (Nonstationary Multisplitting (see [9])). Given the initial vector xð0Þ.

For k ¼ 0;1;2; . . . ; until convergence.
In processor i; i ¼ 1 to m

yð0Þi ¼ xðkÞ

For j ¼ 1 to sði; kÞ
Miy

ðjÞ
i ¼ Niy

ðj�1Þ
i þ b,

xðkþ1Þ ¼
Pm

i¼1Eiy
ðsði;kÞÞ
i .

Lemma 2.3 [18]. Let A be a symmetric positive definite matrix. Assume the splitting A ¼ M � N is P-regular. Given s P 1, there
exists a unique splitting A ¼ F � G such that ðM�1NÞs ¼ F�1G. Moreover, the splitting is P-regular.

Lemma 2.4 ([14,18]). Assume that A is a symmetric positive definite matrix, let A ¼ F � G be P-regular splitting, then there exists
a positive number r such that

kA
1
2ðF�1GÞA�

1
2k2 6 r < 1:
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