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a b s t r a c t

In this paper, we discuss two classes of parameterized block triangular preconditioners for
the generalized saddle point problems. These preconditioners generalize the common
block diagonal and triangular preconditioners. We will give distributions of the eigenvalues
of the preconditioned matrix and provide estimates for the interval containing the real
eigenvalues. Numerical experiments of a model Stokes problem are presented.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

We consider the solution of the generalized saddle point linear system
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; or Au ¼ b; ð1:1Þ

where A 2 Rn�n is symmetric and positive definite, B 2 Rm�n has full rank, C 2 Rm�m is symmetric and positive semi-definite,
and m 6 n. Problem (1.1) arises in a variety of problems, such as constrained quadratic programming, constrained least-
squares problems, mixed finite-element approximations of elliptic PDEs, computational fluid dynamics, and so on. We refer
the reader to [14] for a general discussion.

It has been studied that there are n positive and m negative eigenvalues of the coefficient matrix of the system (1.1). For
large n and m, it may be attractive to use iterative methods. In particular, Krylov subspace methods might be used. It is often
advantageous to use a preconditioner with such iterative methods. The preconditioner should reduce the number of itera-
tions required for convergence but not significantly increase the amount of computation required at each iteration. Precon-
ditioning for system (1.1) has been studied in many papers, such as block diagonal preconditioners [20,24], block triangular
preconditioners [4,7,16,22,26–28], constraint preconditioners [7,8,15,17–19], HSS preconditioners [1,3,5,9,13,21], restric-
tively preconditioned conjugate gradient methods [6,12], matrix splitting preconditioners [23,25] and so on. Recently,
Simoncini [22] and Cao [16] studied the application of the block triangular preconditioners
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respectively, where bA 2 Rn�n and bC 2 Rm�m are symmetric and positive definite together with a Krylov subspace iter-
ative solver. It has been studied that many matrix splitting preconditioners are possibly obtained through the simple
iterative methods (e.g., Jacobi, symmetric Gauss–Seidel (SGS), successive overrelaxation (SOR), symmetric successive
overrelaxation (SSOR) preconditioners [2,10,11,23,25]). The preconditioners P and G can be taken from the generalized
Gauss–Seidel splitting of the coefficient matrix A. Choosing appropriate x, SOR method has better convergence rate
than the Gauss–Seidel method. This motivates us to study the following two parameterized block triangular
preconditioners

P1 ¼
bA xBT

0 �bC
" #

and P2 ¼
bA xBT

0 bC
" #

;

where bA 2 Rn�n and bC 2 Rm�m are symmetric and positive definite, x is a real parameter and x P 0. In the case of
x ¼ 0;P1 and P2 are block diagonal preconditioners. They have been discussed in many papers, see, for example,
[20,24]. In contrast with our preconditioners, we only consider the case x = 0 in the numerical experiment. In the case
of x ¼ 1;P1 and P2 are block triangular preconditioners, which have been studied in [22,16], respectively. It is worth
pointing out that in [7], Bai and Ng also proposed the block triangular preconditioners P and G. Some interesting results
were given. Clearly, we give the generalized preconditioners. Simoncini [22] has showed that the preconditioned matrix
AP�1 is positive stable, and the real part of each eigenvalue is contained in a range. Cao [16] has showed that the pre-
conditioned matrix AG�1 is indefinite with all eigenvalues being real and the estimate for the interval containing these
real eigenvalues has been studied. In this paper, we will show that using the preconditioners P1 and P2, the precondi-
tioned matrices AP�1

1 and AP�1
2 have similar properties. For the preconditioned matrix AP�1

1 , the complex eigenvalues
are contained in a circle with a radius which depends on x. Choosing appropriate x, only real eigenvalues occur. For the
preconditioned matrix AP�1

2 , the eigenvalues are contained in a range which depends on x, too. That is to say, appro-
priate x can chosen such that the eigenvalues are more cluster and minimum residual method such as GMRES used to
solve preconditioned linear system has better convergence rate than [22,16]. Our numerical experiments of a model
Stokes problem are presented to show this.

Throughout this paper k � k indicates the 2-norm and i ¼
ffiffiffiffiffiffiffi
�1
p

denotes the imaginary unit. For a vector x, xT and x*

indicate its transpose and transposed conjugate, respectively. For a matrix A, A > 0 means that A is symmetric and po-
sitive definite.

2. Eigenvalue analysis of preconditioned matrix AP�1
1

We consider the eigenvalue problem
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or equivalently, the generalized eigenvalue problem with
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Consider additionally the block diagonal preconditioner
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: ð2:2Þ
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since P0 is symmetric and positive definite. Then we can write the generalized eigenvalue problem

(2.1) as
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or equivalently
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Let eA ¼ bA�1
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2. Then (2.3) becomes
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