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Keywords: In this article we introduce the smooth Poisson-Cauchy type singular integral operators
S?multaneous global SmOchHESS over the real line. Here we study their simultaneous global smoothness preservation prop-
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son type inequalities are almost sharp containing elegant constants, and they reflect the
high order of differentiability of the engaged function.
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1. Introduction

The global smoothness preservation property of other singular integrals has been studied initially in [1] and later in [2].
The rate of convergence of these singular integrals has been studied initially in [3-5] and later in [6-8]. Most recently it was
studied in detail in [9-11], over the real line, for the Picard general type integral operators and in [12,13] for the Gauss-Wei-
erstrass type operators. All the above-mentioned papers along with the earlier ones [14-16] by the first author motivate the
current work. Other motivation comes from [21,22]. Reference [18] is used for the basic calculations.

More precisely here we study the smooth Poisson-Cauchy singular integral operators over R acting on highly smooth
functions. We study first their simultaneous global smoothness preservation property with respect to |- |,, 1 <p < oo,
by using higher order moduli of smoothness. Then we study their simultaneous pointwise and uniform approximation to
the unit operator with rates by using the first modulus of continuity. The established estimates are almost optimal and con-
tain nice constants. The modulus of continuity in the estimates is with respect to the higher order derivative of the engaged
function. The discussed operators are not in general positive.

2. Global smoothness preservation results

Let f : R — R be a measurable function and consider the Lebesgue integral
L [~ flx+t)
P (B =25) Jx (122 4 &)

E>0, xeN, p>L xeR.
We notice, first, that we have

M. (f;x) = dt, (1)
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for any constant c € R.
We present the following result regarding global smoothness preservation properties of M.

M:(c;x)

Theorem 1. Let h > 0.

(i) Assume that wn(f,h) < oo and M:(f;x) € R, then
Om(Mf, h) < on(f,h).

Inequality (3) is sharp, namely it is attained by f(x) =
(ii) Let f € L1(R) then

Om(Msf,h); < on(f,h);.

Finally,
(iii) let f € Ly(R), p > 1, then

On(Mcf, 1), < On(f, h),.

Above we use for m € N the mth modulus of smoothness for 1 < p < oo,
Cl)m(f,h)p = Sllp ”A;nf(x)Hp,xv
0<t<h

where

zm: ( ) (x +jt),

j=0
see also [17, p. 44]. Denote wn(f,h), = wn(f,h).

Proof

(i) We have the following:
apouf) = > (-1 (T )mfceenin
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Jj=0 J F(ZOL)F(B 20 o0 <k20{ + CVZ“)
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Therefore

AT (M) < LB

) /: T ——'4

F(Z‘—a)l“(ﬁ 21—“ J_ <k21+52a>
From which we derive
( (fo(yﬁ 1 B
Om(M:f,h) < wm(f h 7dk_wm(f,h)7
F(u (](21 “2“>
proving (3).

To check the sharpness of (3) notice that wy,(x™, h), = m!h™. Also, by (8), we have that
F(ﬁ)o{fzwil B
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B
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and therefore obtaining wy,(M.f,h) = m!h"™.
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