Contents lists available at ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Boundary value problems for differential equations with deviated arguments which depend on the unknown solution

Agnieszka Dyki

Gdansk University of Technology, Department of Differential Equations, 11/12 G. Narutowicz Str., 80-233 Gdańsk, Poland

ARTICLE INFO

Keywords: Monotone iterations Quasisolutions Lower and upper solutions

ABSTRACT

We discuss boundary value problems for first-order functional differential equations with deviated arguments which depend on the unknown solution. We formulate sufficient conditions for existence of a quasisolution and a unique solution of such problems. To obtain the results we use the method of monotone iterations.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the problem

$$\begin{cases} x'(t) = f\left(t, x(\beta(t, x(t))), \int_0^t g(t, s, x(s)) ds\right) \equiv F(x, x, x)(t), & t \in J, \\ x(0) = \lambda x(T) + k, \end{cases}$$
(1)

where $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), \beta \in C(J \times \mathbb{R}, \mathbb{R}), g \in C(J \times J \times \mathbb{R}, \mathbb{R}), \lambda, k \in \mathbb{R}, J = [0, T]$ and

$$F(x,y,z)(t) = f\left(t, x(\beta(t,y(t))), \int_0^t g(t,s,z(s))ds\right).$$

In this paper we extend some results of paper [3] where function f did not depend on the third variable. Note that the deviating argument β depends on the unknown solution x.

The plan of this paper is as follows: In Section 2, we formulate conditions which guarantee existence of maximal and minimal quasisolution of problem (1) in a corresponding sector. To prove the existence results we apply the monotone iterative method; for details see for example [4]. See also [1,2,5]. In Section 3, we formulate sufficient conditions under which problem (1) has a unique solution. In the last section we give an example to illustrate the applications of obtained results.

2. Quasisolution of problem (1)

In this section we investigate problem (1) when it has a quasisolution. We consider two cases.

2.1. Case 1: $\lambda \ge 0$

A pair $u, v \in C^1(J, \mathbb{R})$ is called a quasisolution of problem (1) if

E-mail address: adyki@wp.pl

^{0096-3003/\$ -} see front matter \odot 2009 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2009.07.042

$$\begin{cases} u'(t) = F(v, v, v)(t), \ t \in J, \quad u(0) = \lambda u(T) + k, \\ v'(t) = F(u, u, u)(t), \ t \in J, \quad v(0) = \lambda v(T) + k \end{cases}$$

A pair $U, V \in C^1(J, \mathbb{R})$ is called the minimal and maximal quasisolution of problem (1) if for any $u, v \in C^1(J, \mathbb{R})$ quasisolution of (1) we have $U(t) \leq u(t), v(t) \leq V(t), t \in J$.

Theorem 1. Assume that:

1. $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), \beta \in C(J \times \mathbb{R}, \mathbb{R}), g \in C(J \times J \times \mathbb{R}, \mathbb{R})$ and f is nonincreasing with respect to the last two variables 2. a pair $y_0, z_0 \in C^1(J, \mathbb{R})$ satisfies the system:

$$\begin{cases} y_0'(t) \leq F(z_0, z_0, z_0)(t), \ t \in J, \quad y_0(0) \leq \lambda y_0(T) + k, \\ z_0'(t) \geq F(y_0, y_0, y_0)(t), \ t \in J, \quad z_0(0) \geq \lambda z_0(T) + k, \end{cases}$$
(2)

3. $y_0(t) \leq z_0(t), t \in J$

4. $\beta: \Omega \to J, g: J \times \Omega \to \mathbb{R}$ where $\Omega = \{(t, u): y_0(t) \leq u \leq z_0(t), t \in J\}$, are nondecreasing with respect to u for $y_0(t) \leq u \leq z_0(t), t \in J$,

5. y_0, z_0 are nondecreasing on J and $f(t, u, v) \ge 0$ for $t \in J, y_0(t) \le u \le z_0(t), \int_0^t g(t, s, y_0(s)) ds \le v \le \int_0^t g(t, s, z_0(s)) ds, t \in J$.

Then, in the sector $[y_0, z_0]_* = \{ u \in C^1(J, \mathbb{R}) : y_0(t) \leq u(t) \leq z_0(t), t \in J \}$, problem (1) has the minimal and maximal quasisolution.

Proof. Let us define sequences $\{y_n, z_n\}$ by

$$\begin{cases} y'_{n+1}(t) = F(z_n, z_n, z_n)(t), & t \in J, \quad y_{n+1}(0) = \lambda y_n(T) + k \\ z'_{n+1}(t) = F(y_n, y_n, y_n)(t), & t \in J, \quad z_{n+1}(0) = \lambda z_n(T) + k \end{cases}$$

for n = 0, 1, ... Note that in view of assumption 5 functions $y_n, z_n, n \in \mathbb{N}$, are nondecreasing on *J*. First we show that

$$y_0(t) \le y_1(t) \le z_0(t), \quad t \in J.$$
(3)

Put $p = y_0 - y_1$. In view of (2) we have $p(0) \le 0$ and $p'(t) \le 0$. Hence $p(t) \le 0, t \in J$ and $y_0(t) \le y_1(t)$ on J. Analogically we can show that $z_1(t) \le z_0(t)$.

Now put $p = y_1 - z_1$. We have

$$p(\mathbf{0}) = \lambda [\mathbf{y}_{\mathbf{0}}(T) - \mathbf{z}_{\mathbf{0}}(T)] \leqslant \mathbf{0}$$

and

$$p'(t) = F(z_0, z_0, z_0)(t) - F(y_0, y_0, y_0)(t) \le 0$$

because

$$y_0(\beta(t, y_0(t))) \leqslant z_0(\beta(t, z_0(t)))$$

and

$$\int_0^t g(t,s,y_0(s)) \, ds \leqslant \int_0^t g(t,s,z_0(s)) \, ds$$

in view of assumptions 4 and 5. It yields that $p(t) \leq 0$ on *J* and relation (3) holds.

Note that

$$y_1'(t) = F(z_0, z_0, z_0)(t) - F(z_1, z_1, z_1)(t) + F(z_1, z_1, z_1)(t) \leqslant F(z_1, z_1, z_1)(t)$$

$$z_1'(t) = F(y_0, y_0, y_0)(t) - F(y_1, y_1, y_1)(t) + F(y_1, y_1, y_1)(t) \ge F(y_1, y_1, y_1)(t)$$

because

$$z_0(\beta(t,z_0(t))) \ge z_1(\beta(t,z_1(t))), \quad \int_0^t g(t,s,z_0(s)) \, ds \ge \int_0^t g(t,s,z_1(s)) \, ds$$

and

$$y_0(\beta(t,y_0(t))) \leq y_1(\beta(t,y_1(t))), \quad \int_0^t g(t,s,y_0(s)) \, ds \leq \int_0^t g(t,s,y_1(s)) \, ds.$$

Moreover

 $y_1(0) \leq \lambda y_1(T) + k$ and $z_1(0) \geq \lambda z_1(T) + k$. Thus y_1, z_1 satisfy system (2).

1896

Download English Version:

https://daneshyari.com/en/article/4632863

Download Persian Version:

https://daneshyari.com/article/4632863

Daneshyari.com