Boundary value problems for differential equations with deviated arguments which depend on the unknown solution

Agnieszka Dyki
Gdansk University of Technology, Department of Differential Equations, 11/12 G. Narutowicz Str., 80-233 Gdańsk, Poland

ARTICLE INFO

Keywords:

Monotone iterations
Quasisolutions
Lower and upper solutions

Abstract

We discuss boundary value problems for first-order functional differential equations with deviated arguments which depend on the unknown solution. We formulate sufficient conditions for existence of a quasisolution and a unique solution of such problems. To obtain the results we use the method of monotone iterations.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider the problem

$$
\left\{\begin{array}{l}
x^{\prime}(t)=f\left(t, x(\beta(t, x(t))), \int_{0}^{t} g(t, s, x(s)) d s\right) \equiv F(x, x, x)(t), \quad t \in J \tag{1}\\
x(0)=\lambda x(T)+k
\end{array}\right.
$$

where $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), \beta \in C(J \times \mathbb{R}, \mathbb{R}), g \in C(J \times J \times \mathbb{R}, \mathbb{R}), \lambda, k \in \mathbb{R}, J=[0, T]$ and

$$
F(x, y, z)(t)=f\left(t, x(\beta(t, y(t))), \int_{0}^{t} g(t, s, z(s)) d s\right)
$$

In this paper we extend some results of paper [3] where function f did not depend on the third variable. Note that the deviating argument β depends on the unknown solution x.

The plan of this paper is as follows: In Section 2, we formulate conditions which guarantee existence of maximal and minimal quasisolution of problem (1) in a corresponding sector. To prove the existence results we apply the monotone iterative method; for details see for example [4]. See also [1,2,5]. In Section 3, we formulate sufficient conditions under which problem (1) has a unique solution. In the last section we give an example to illustrate the applications of obtained results.

2. Quasisolution of problem (1)

In this section we investigate problem (1) when it has a quasisolution. We consider two cases.
2.1. Case 1: $\lambda \geqslant 0$

A pair $u, v \in C^{1}(J, \mathbb{R})$ is called a quasisolution of problem (1) if

[^0]\[

$$
\begin{cases}u^{\prime}(t)=F(v, v, v)(t), t \in J, & u(0)=\lambda u(T)+k \\ v^{\prime}(t)=F(u, u, u)(t), t \in J, & v(0)=\lambda v(T)+k\end{cases}
$$
\]

A pair $U, V \in C^{1}(J, \mathbb{R})$ is called the minimal and maximal quasisolution of problem (1) if for any $u, v \in C^{1}(J, \mathbb{R})$ quasisolution of (1) we have $U(t) \leqslant u(t), v(t) \leqslant V(t), t \in J$.

Theorem 1. Assume that:

1. $f \in C(J \times \mathbb{R} \times \mathbb{R}, \mathbb{R}), \beta \in C(J \times \mathbb{R}, \mathbb{R}), g \in C(J \times J \times \mathbb{R}, \mathbb{R})$ and f is nonincreasing with respect to the last two variables
2. a pair $y_{0}, z_{0} \in C^{1}(J, \mathbb{R})$ satisfies the system:

$$
\begin{cases}y_{0}^{\prime}(t) \leqslant F\left(z_{0}, z_{0}, z_{0}\right)(t), t \in J, & y_{0}(0) \leqslant \lambda y_{0}(T)+k \tag{2}\\ z_{0}^{\prime}(t) \geqslant F\left(y_{0}, y_{0}, y_{0}\right)(t), t \in J, & z_{0}(0) \geqslant \lambda z_{0}(T)+k\end{cases}
$$

3. $y_{0}(t) \leqslant z_{0}(t), t \in J$
4. $\beta: \Omega \rightarrow J, g: J \times \Omega \rightarrow \mathbb{R}$ where $\Omega=\left\{(t, u): y_{0}(t) \leqslant u \leqslant z_{0}(t), t \in J\right\}$, are nondecreasing with respect to u for $y_{0}(t) \leqslant u \leqslant z_{0}(t), t \in J$,
5. y_{0}, z_{0} are nondecreasing on J and $f(t, u, v) \geqslant 0$ for $t \in J, y_{0}(t) \leqslant u \leqslant z_{0}(t), \int_{0}^{t} g\left(t, s, y_{0}(s)\right) d s \leqslant v \leqslant \int_{0}^{t} g\left(t, s, z_{0}(s)\right) d s, t \in J$.

Then, in the sector $\left[y_{0}, z_{0}\right]_{*}=\left\{u \in C^{1}(J, \mathbb{R}): y_{0}(t) \leqslant u(t) \leqslant z_{0}(t), t \in J\right\}$, problem (1) has the minimal and maximal quasisolution.
Proof. Let us define sequences $\left\{y_{n}, z_{n}\right\}$ by

$$
\left\{\begin{array}{lll}
y_{n+1}^{\prime}(t)=F\left(z_{n}, z_{n}, z_{n}\right)(t), & t \in J, & y_{n+1}(0)=\lambda y_{n}(T)+k, \\
z_{n+1}^{\prime}(t)=F\left(y_{n}, y_{n}, y_{n}\right)(t), & t \in J, & z_{n+1}(0)=\lambda z_{n}(T)+k
\end{array}\right.
$$

for $n=0,1, \ldots$ Note that in view of assumption 5 functions $y_{n}, z_{n}, n \in \mathbb{N}$, are nondecreasing on J.
First we show that

$$
\begin{equation*}
y_{0}(t) \leqslant y_{1}(t) \leqslant z_{1}(t) \leqslant z_{0}(t), \quad t \in J . \tag{3}
\end{equation*}
$$

Put $p=y_{0}-y_{1}$. In view of (2) we have $p(0) \leqslant 0$ and $p^{\prime}(t) \leqslant 0$. Hence $p(t) \leqslant 0, t \in J$ and $y_{0}(t) \leqslant y_{1}(t)$ on J. Analogically we can show that $z_{1}(t) \leqslant z_{0}(t)$.

Now put $p=y_{1}-z_{1}$. We have

$$
p(0)=\lambda\left[y_{0}(T)-z_{0}(T)\right] \leqslant 0
$$

and

$$
p^{\prime}(t)=F\left(z_{0}, z_{0}, z_{0}\right)(t)-F\left(y_{0}, y_{0}, y_{0}\right)(t) \leqslant 0
$$

because

$$
y_{0}\left(\beta\left(t, y_{0}(t)\right)\right) \leqslant z_{0}\left(\beta\left(t, z_{0}(t)\right)\right)
$$

and

$$
\int_{0}^{t} g\left(t, s, y_{0}(s)\right) d s \leqslant \int_{0}^{t} g\left(t, s, z_{0}(s)\right) d s
$$

in view of assumptions 4 and 5 . It yields that $p(t) \leqslant 0$ on J and relation (3) holds.
Note that

$$
\begin{aligned}
& y_{1}^{\prime}(t)=F\left(z_{0}, z_{0}, z_{0}\right)(t)-F\left(z_{1}, z_{1}, z_{1}\right)(t)+F\left(z_{1}, z_{1}, z_{1}\right)(t) \leqslant F\left(z_{1}, z_{1}, z_{1}\right)(t) \\
& z_{1}^{\prime}(t)=F\left(y_{0}, y_{0}, y_{0}\right)(t)-F\left(y_{1}, y_{1}, y_{1}\right)(t)+F\left(y_{1}, y_{1}, y_{1}\right)(t) \geqslant F\left(y_{1}, y_{1}, y_{1}\right)(t)
\end{aligned}
$$

because

$$
z_{0}\left(\beta\left(t, z_{0}(t)\right)\right) \geqslant z_{1}\left(\beta\left(t, z_{1}(t)\right)\right), \quad \int_{0}^{t} g\left(t, s, z_{0}(s)\right) d s \geqslant \int_{0}^{t} g\left(t, s, z_{1}(s)\right) d s
$$

and

$$
y_{0}\left(\beta\left(t, y_{0}(t)\right)\right) \leqslant y_{1}\left(\beta\left(t, y_{1}(t)\right)\right), \quad \int_{0}^{t} g\left(t, s, y_{0}(s)\right) d s \leqslant \int_{0}^{t} g\left(t, s, y_{1}(s)\right) d s
$$

Moreover

$$
y_{1}(0) \leqslant \lambda y_{1}(T)+k \quad \text { and } \quad z_{1}(0) \geqslant \lambda z_{1}(T)+k .
$$

Thus y_{1}, z_{1} satisfy system (2).

https://daneshyari.com/en/article/4632863

Download Persian Version:

https://daneshyari.com/article/4632863

Daneshyari.com

[^0]: E-mail address: adyki@wp.pl

