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1. Introduction

In this paper, we discuss the generalized Korteweg-de-Vries (gKdV) equation with time-dependent damping and disper-
sion [1] given by
Ue + UMy + o(E)u + B() Uy = 0, (1)
for any positive integer n. Specifically, u; describes the time evolution and u"u, is the nonlinear term. The last two terms rep-
resent the effects of linear damping and dispersion with time-dependent coefficients o(t) and f(t), respectively. This equa-
tion has a wide range of applications and appears, for example, in the study of coastal waves in oceans, in the study of liquid
drops and bubbles, and in the investigation of atmospheric blocking phenomena such as dipole blocking [2,3]. The gKdV,
however, cannot be integrated by the classical integration methods and so the solitary wave ansatz is used in this paper
to demonstrate the effectiveness of the exp-function, the tanh-coth and the sine-cosine methods for the gkdV in the pres-
ence of linear time-dependent damping and dispersion.

2. Application of the tanh-coth method
2.1. The tanh-coth method

The standard tanh method [4-6] uses tanh as a new variable because all derivatives of tanh are expressible in terms of
tanh. Introducing a new independent variable

Y =tanh(ué), &=x-c(t), (2)
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transforms the partial differential equation

P(uf7uX7uXX7uXXX7 ------ ) = 07 (3)
into an ordinary differential equation of the wave variable ¢ = x — c(t)t
Qu, v, u" u”,...... ) =0. (4)

Eq. (4) is then integrated with all the integration constants of the derivative terms taken to be zero. We now apply the change
of derivatives

d 5 d
@ H1 =Y o5,
7 J > (5)
a _ 452 oy @ o 22 @
a7 2u°Y(1 Y)dy+,u(1 Y9) vl
The tanh-coth method [4-6] admits the use of the finite expansion
M M
u(ud) =S(Y)=>_ay* +> bhy™* (6)
k=0 k=1

for some positive integer M, which is known in most cases. The constants a, and by, however, are unknown and have to be deter-
mined. Substituting (6) into the ordinary differential equation (4) yields an algebraic equation in the powers of Y and the value
of M can then be determined by collecting all the coefficients of the powers of Y in the resulting equation. The vanishing of all
these coefficients then yields a system of algebraic equations involving the parameters a, (k=0, ..., M), i and c(t).

2.2. Using the tanh-coth method

Use the relation
u(@) = MOV, ™)
to transform (1) to

% v’n® —[c(t) + %t}i(t)n2 VR4 2OV + o)A v n® + A0)B0)[(1 - 2n)(1 — n)(V)?

+3n(1 —n)ov'v" +n*v"v*] = 0. (8)
Then, from ¢/2? and (¢')?, we have
M+1+3M=3M+1), 9)
which implies that M = 2. So
v(x,t) =S(Y) =ao+a;Y + a;Y* + b1 Y ' + bY 2. (10)

Now substitute (10) into (8), collect the coefficients of the powers of Y/, —9 <i < 9, set all the coefficients to zero, and solve
the resulting system of algebraic equations to obtain the following three possible cases.

Case 1.
2O 2 (n? +3n+2 . 2 [ —na 2B (n% +3n + 2
a = — L K Iglz/l(t) ); At) = Coef ([)dt; ap = L )'u 7(12/1(1') )s a; =0,b, =0,
ap(e)u?
by =0, C(t):fnzitduc]. (11)
Case 2.
280 WA (n? +3n+2 2802 (n? +3n+2 2 [ —na
b2 _ ﬁ( ):u 1(12}'({-) )7 ap = ﬁ( )lu 1(12/L(t) )7 j.(t) _ Coef (t)dt, a = 07 a = O7
4p(t)?
by =0, c(t)= w (12)
Case 3.
2
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