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a b s t r a c t

Since the 1980s, biologists have noticed a major decline in amphibian population. The rea-
son this is so alarming is because amphibians have been seen as a ‘‘Canary in the mine”
when it comes to the world’s environmental changes. With global warming and CO2 emis-
sions all over the news, we have become more aware of how we are impacting our world. If
the decline of amphibians is a precursor to what is happening with the environment, then
we need to find a good model to give us estimates on what is going to happen in the future.
Here we used a predator–prey-competition model to help investigate how three amphib-
ians might interact when confined to the same area.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Recently, amphibians have been declining worldwide. [6,10,16,22]. There are many hypotheses about why this decline is
occurring including viruses, disease, habitat destruction, introduction of new predators, etc. [2,3,5–9,11,16–19,21,25,26]. In
this paper, we assume that there are three types of amphibians interacting within the same area, toads, frogs, and
salamanders.

We chose to use a modified Lotka–Volterra model with competition amongst the prey and density dependence amongst
all animals to model limited resources. Of course such models are not perfect as they can easily contradict observed popu-
lation levels amongst predators and prey [13,29]. For a summary of common predator–prey models, the interested reader
can turn to [4]. For an introduction to the analysis of several basic predator–prey models, see [1,23,12].

The basic model Lotka–Volterra, constructed independently in 1925 and 1928 by Lotka [20] and Volterra [28], respec-
tively, is a predator–prey model where the predator, P, dies exponentially in the absence of its prey, N, and the prey grows
exponentially in the absence of the predator. The basic predator–prey model is the system of differential equations

dN
dt
¼ aN � bNP;

dP
dt
¼ cNP � dP:

The predation term, bNP, and gain from predation, cNP, is based upon the concept of mass action. Growth of prey is modeled
by aN and death of the predators by dP. This model exhibits a classic oscillatory behavior with the rise and fall in the number
of predators slightly behind that of the prey. That is, when prey is abundant, this causes the number of predators to increase.
However, with an increase of predators, consumption of prey increases, driving the number of prey down. This decrease in
prey eventually forces a decrease in predators, which in turn allows prey to again increase, starting the cycle over again.
These ideas have been generalized to any number of predator and prey species [23].
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Of course, exponential growth of prey in the absence of predators is not very realistic. So, models often include density
dependence to simulate bounds on resources or simulate how hard it is for predators to hunt prey. A common assumption is
to assume logistic growth on the prey with some maximum carrying capacity. Often the predation term is also modified to
simulate different hunting strategies that a particular predator might exhibit. A predator’s survival could be modified based
upon certain characteristics it shows. See, for example [15,24].

A common competition model [1,12,23], is the following

dN1

dt
¼ r1N1 1� N1

K1
� b12

N2

K1

� �
;

dN2

dt
¼ r2N2 1� N2

K2
� b21

N1

K2

� �
:

All parameters are assumed positive. In this model, N1 grows logistically if its competitor N2 is not present. However, when
both species are present, then the term b12 measures the negative effects that species N2 has upon N1. Of course, similar
statements hold for N2. Considering the possible equilibria, we see that there are four cases to consider. ðK1;0Þ is locally
asymptotically stable, ð0;K2Þ is locally asymptotically stable, both ðK1;0Þ and ð0;K2Þ are locally asymptotically stable, or
the positive equilibrium is locally asymptotically stable.

However, none of these basic models capture exactly what we wish to model. We wished to construct a predator–prey
model where the prey competed amongst themselves for resources, the predators could survive without the prey, and all
three species were limited in growth by finite resources. A much more general model can be defined for multispecies inter-
actions, see for example [14]. This model has the form

dNi

dt
¼ Ni bi þ

Xm

i¼1

aijNj

 !
; i ¼ 1;2; . . . ;m: ð1:1Þ

We use a specific instance of this model in this paper.

2. The model

We choose to model adult animals and denote salamanders with an A, toads by eA, and frogs by bA. This naming convention
holds for virtually all parameters in the model, with the exception of predation terms in the salamander equation. Since all
the species are living around one lake or pond then the equations need to also have interaction terms. To simulate compe-
tition, predation, and cannibalism, the death rate is assumed to be a function of the total animals. We assume that salaman-
ders eat both frogs and toads and other, smaller creatures, living in and around the lake. Thus salamanders do not depend
solely upon toads and frogs for their survival. Hence, we include terms to simulate the predation of frogs and toads by sal-
amanders. We also assume that frogs and toads compete for resources. The terms with P and / indicate negative effects from
predation and competition terms, respectively. The terms with a d indicate self competition or density dependence. The
terms with a q indicate positive effects due to predation. For example, the rate of change of salamanders is given by
GA� dA2 þ q̂AbA þ ~qAeA where GA represents the recruitment of adults, dA2 the negative effect of salamander density depen-
dence, and q̂AbA and ~qAeA the gain by predation on frogs and toads, respectively. Fig. 1 is a compartmental diagram describing
our model. Expressions beneath an arrow indicate a loss to a compartment while expressions above an arrow represent a
gain. For example, the term ~qAeA represents a gain to A due to predation while ePAeA represents the loss to eA due to predation.
Model (2.1) is given by

dA
dt
¼ GA� dA2 þ q̂AbA þ ~qAeA;

deA
dt
¼ eGeA � ~deA2 � ePeAA� ~/eAbA;

dbA
dt
¼ bGbA � d̂bA2 � bPbAA� /̂bAeA:

ð2:1Þ

The biological meaning of the parameters is included in Table 1.

2.1. Equilibria

We first consider the various equilibria. Stability of selected equilibria will be investigated in the next section. Clearly,
extinction is one equilibrium. If we assume that two of the three animals die out, then the resulting system collapses to a
single differential equation. For example, if salamanders survive while toad and frogs become extinct,

dA
dt
¼ GA� dA2

:

This has a well known positive equilibriumA ¼ G
d which is a ratio of the recruitment rate to the removal rate of adult animals.

The other two are similar.
Now, we consider the case where two species survive. Note that due to symmetry contained within the model, we need

only consider the cases where salamanders and either frogs or toads survive, and the case where salamanders do not survive.
Thus, when salamanders and toads survive, Model (2.1) reduces to Model (2.2)
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