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a b s t r a c t

This paper investigates a discrete-time epidemic model by qualitative analysis and numer-
ical simulation. It is verified that there are phenomena of the transcritical bifurcation, flip
bifurcation, Hopf bifurcation types and chaos. Also the largest Lyapunov exponents are
numerically computed to confirm further the complexity of these dynamic behaviors.
The obtained results show that discrete epidemic model can have rich dynamical behavior.
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1. Introduction

Mathematical models describing the population dynamics of infectious diseases have been playing an important role in
better understanding of epidemiological patterns and disease control for a long time. Epidemiological models are now
widely used as more epidemiologists realize the role that modeling can play in basic understanding and policy development
[10,19]. Understanding emergent infectious diseases in humans is viewed with increasing importance. The rapid spread of
SARS [4], the perceived threat of bio-terrorism [15] and concerns over influenza pandemics [23] have all highlighted vulner-
ability to (re)emerging infections. For all these examples, mathematical modeling has been used to develop an understand-
ing of the relevant epidemiology, as well as to quantify the likely effects of different intervention strategies [8,11,21].

An important aspect of the mathematical study of epidemiology is the formulation of the incidence function. The inci-
dence rate is the rate of new infection. In most epidemiological models, bilinear and standard incidence rates have been fre-
quently used in classical epidemic models [2,3,5,7,12–14,18]. Liu et al. [16,17] concluded that the bilinear mass action
incidence rate due to saturation or multiple exposures before infection could lead to nonlinear incidence rate bSpIq.

Simple models, by their own nature, cannot incorporate many of the complex biological factors. However, they often pro-
vide useful insights to help our understanding of complex process. For such reason, in the present study, we set p = 2 and
q = 1. We firstly focus on the following continuous model:

dS
ds ¼ rSð1� S

KÞ � bS2I;
dI
ds ¼ bS2I � dI;

(
ð1:1Þ

where S, I are denoted as the susceptible and infected, respectively. And r represents the intrinsic birth rate constant, K rep-
resents the carrying capacity, b represents the force of infection or the rate of transmission, and d represents the death coef-
ficient of I for the disease.
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By setting

s ¼ t
d
; b ¼ b

d
; a ¼ r

d
;

we have the following form:

dS
dt ¼ aSð1� S

KÞ � bS2I;
dI
dt ¼ bS2I � I:

(
ð1:2Þ

The advantages of a discrete-time approach are multiple in epidemic model [20,22]. Firstly, difference models are more
realistic than differential ones since the epidemic statistics are compiled from given time intervals and not continuously. The
second reason are that, the discrete-time models can provide natural simulators for the continuous cases. One can thus not
only study with good accuracy the behavior of the continuous-time model, but also assess the effect of larger time steps. At
last, the use of discrete-time models makes it possible to use the entire arsenal of methods recently developed for the study
of mappings and lattice equations, either from the integrability and/or chaos points of view.

Applying Euler scheme to the system (1.2), we obtain the following equation:

Snþ1 ¼ ðaþ 1ÞSn � cS2
n � bS2

nIn;

Inþ1 ¼ bS2
nIn;

(
ð1:3Þ

where c ¼ a
K.

The paper is organized as follows. It is verified that there are phenomena of the transcritical bifurcation, flip bifurcation
and Hopf bifurcation in Section 2. In Section 3, a series of numerical simulations show that there are bifurcation and chaos in
the discrete epidemic model. Finally, some conclusions are given.

2. Bifurcation analysis

For the Eq. (1.3), if the parameters a, b and c are fixed, by calculating, we can get the three fixed points
E0 ¼ ð0;0Þ; E1 ¼ a

c ;0
� �

and E2 ¼ 1ffiffi
b
p ; a

ffiffi
b
p
�c

b

� �
. It is obvious that the fixed point E0 is a saddle. In the following sections, we will

focus on E1; E2.

2.1. Fixed point E1 ¼ a
c ; 0
� �

The following is the Jacobian matrix at E1:

JE1
¼

1� a � ba2

c2

0 ba2

c2

 !
;

where a is a bifurcation parameter. If ba2 ¼ c2; JE1
has eigenvalues k1 ¼ 1� a; k2 ¼ 1. And a – 2 implies jk1j– 1. The follow-

ing theorem is the case that the fixed point E1 is a transcritical bifurcation point.

Theorem 2.1. If ba2 ¼ c2; a – 2, the system (1.3) will undergoes a transcritical bifurcation at E1. Moreover, when b > c2

a2, the
system has three fixed points, and when b 6 c2

a2, the system has two fixed points.

Proof. Let nn ¼ Sn � a
c ; gn ¼ In; ln ¼ b� c2

a2
, and parameter l is a new and dependent variable, the system (1.3) becomes:

nnþ1 ¼ ð1� aÞnn � gn � cn2
n � a2

c2 lngn � 2c
a nngn � c2

a2 n2
ngn � 2a

c nnlngn � lnn
2
ngn;

gnþ1 ¼ gn þ 2c
a nngn þ a2

c2 lngn þ c2

a2 n2
ngn þ lnn

2
ngn þ 2a

c nnlngn;

lnþ1 ¼ ln:

8><
>: ð2:1Þ

Let

T ¼
1 1 0
0 �a 0
0 0 1

0
B@

1
CA:

By the following transformation:

nn

gn

ln

0
B@

1
CA ¼ T

un

vn

dn

0
B@

1
CA;
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